
低噪声纹波探头测量入门

应用指南

Tektronix[®]

当今大多数电子设计都要求不同的供电电压才能正确 运行。事实上,一块电路内部许多元器件都要求多种 电压,特别是高度集成的片上系统及多种技术接口在 一起的微处理器设计。

由于许多因素,执行 DC 低噪声纹波探头测量正变得 越来越困难,比如:

- 功率效率功能,如功率门和动态电压和频率定标或 DVFS
- 动态负载, 拥有快速瞬态信号
- 串扰和耦合提高
- 开关稳压器,上升时间更快

这就产生了一个重要问题:面对所有这些挑战,怎样 才能保证系统的每个部分都获得正确的功率,来满足 其需求? 首先,我们在整体上看一下低噪声纹波探头及其部分 特点。

非常重要的一点,是要看一下每条 DC 线路,看提供 的功率是否位于目标系统或器件的容差频段内,包括 线路的标称 DC 值,以及存在的任何 AC 噪声或耦合。 AC 噪声是一种低噪声纹波探头信号,可以进一步细 分成宽带噪声、周期性事件和瞬态事件(图 1)。

所有这三个噪声源都影响着到达器件的功率质量,因 此应降低噪声源,以使目标器件能够正确运行。

在最大限度地降低这些噪声源之前,您需要能够看到 噪声源,并准确地测量噪声源。但低噪声纹波探头测 量带来了许多独特的测量挑战,因此必须考虑以下几 项因素:

- 带宽要求
- 系统噪声和附加探头噪声
- AC 或 DC 输入耦合的影响
- 低噪声纹波探头负载挑战

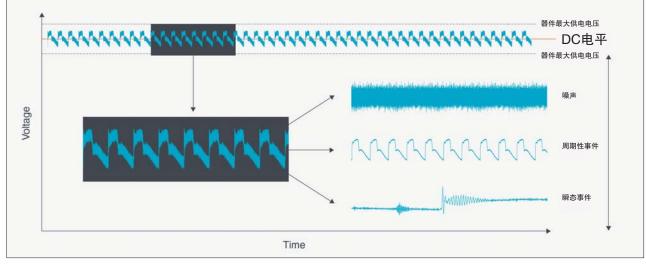
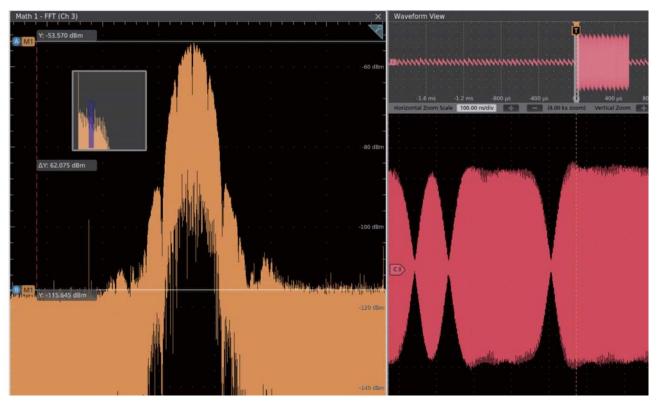



图 1. DC 电源噪声的组成成分。

图 2. 通道 3(红色轨迹)是在线路上耦合了高频干扰的低噪声纹波探头的曲线。如果这个能量太大,那么其可能会干扰器件 运行或导致损坏。

带宽

看一下许多配电设计,测量系统拥有几十 MHz 带 宽似乎就够了。大多数开关设计的开关频率是几百 kHz,最高的可达几 MHz。物理设计和器件越大,其 运行的供电电压越高,对噪声的灵敏度越低。因此, 20MHz 以上的噪声成分几乎不是问题。

现在,随着设计尺寸和供电电压缩小,容差也在缩小。 我们在分析配电网络时,更多地是把它作为传输线环 境来看待,考察的是交叉耦合、线路阻抗和共振区(图 2)。

必需注意,电源转换器件的基础开关频率可能相对较 慢,但边沿速度和上升时间一般要快得多,以帮助降 低开关损耗。这些边沿和其他干扰源可能会激发配电 网络,以高得多的频率产生噪声和谐波。视目标器件 和电路功能,更高阶谐波可能会干扰操作。因此,选 择的示波器和探头必须拥有足够高的带宽,以查看 这些事件,诊断与高频干扰有关的问题。泰克提供1 GHz和4GHz低噪声纹波探头,直接满足了这一需求。

应用指南

选择适当的连接进行测量

在评估低噪声纹波探头使用的探测解决方案时,必需 注意,DUT 连接是实现优质测量时最大的单一推动因 素。如果连接能够为接地提供低电感路径,且拥有最 低有效电容,那么它不仅可以降低振铃,还可以提供 最高带宽。这些连接一般通过焊接转接头和高性能连 接器实现。当需要在非预计的测试点上进行重复测试 时(图4),微型同轴电缆和软焊接转接头为被测器件 提供了半永久连接。在工程师进行设计测试时,小型 RF 连接器,如泰克低噪声纹波探头中提供的 MMCX 电缆,为信号提供了可重复的、可靠的接入路径。这 些连接提供了最佳的信号保真度,但它们并不是随手 可得,因为其要求修改目标器件,或在设计系统时规 划测试点。为了更快、更方便地进行探测,可以使用 点测探头和转接头。泰克提供了TPRBRWSR1G,工 程师在需要快速接入带宽高达 1 GHz 的信号时,可以 使用这一设备。它带有小型元件夹和方形引脚转接头, 帮助工程师更简便地连接测试点。

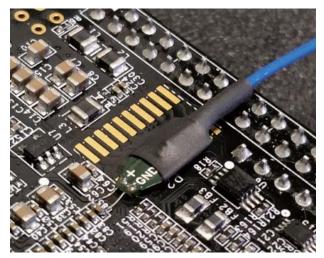


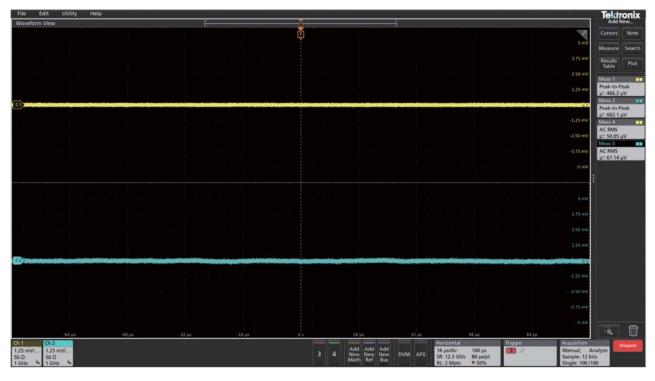
图 4. 透过 0402 解耦电容器连接的 TPR4SIAFLEX 焊接转接头。

图 3. 通过 TPR4000 和 TPR1000 的模块化接头和焊接附件,工程师可以为任何任务选择适当的连接选项。

必需指出,大多数点测探头附件一般都会降低系统的 额定带宽。例如,飞线方形引脚转接头的有效带宽通 常不会超过几百 MHz,而在增加夹子和其他辅助连接 装置时则会进一步下降。

在选择连接方式时,要注意的最后一项是将要进行测 试的环境。许多系统验证工程师需要在极端温度下测 试其设计。专门设计的极端温度电缆和焊接尖端,比 如 TPR4KITHT 自带的电缆和尖端,可以在 –55℃到 +155℃范围内处理器件测试。

管理测量系统和环境噪声


获得基准

随着供电电压变得越来越小,由于工艺形状不断缩小, 必须进行低噪声测量,以查看 DC 电源上存在的小的 方差。此外,许多设计对待功率完整性的态度越来越 严肃。其带来的影响之一,是每个电源的容限越来越 紧张。为测量这一特点,示波器不仅要有超低噪声, 以查看这些事件,而且连接到示波器上的任何探头给 测量带来的噪声也应非常小。测量设备增加的噪声越 小,看到的信号即器件实际行为的信心也就会越高。

对仪器和连接的任何探头进行基准噪声测量,可以让 用户了解整体系统噪声性能。简单的测量,比如在没 有应用信号时输入上存在的电压的峰峰值和 RMS,可 以迅速比较探测系统的附加噪声(图 5)。

在低噪声纹波探头测量中使用 10x 无源探头 会产生什么问题?

在查看各种信号时,高衰减探头提供了优秀的动态范 围,但由于衰减,与低衰减探头相比,其通常会引入

图 5. 通道 1(黄色轨迹)是一条没有输入的示波器通道,通道 2(蓝色轨迹)是输入短路的 TPR1000。注意在 1 GHz 带宽时, 探头只给示波器输入增加了 17 μV 的噪声。 更多的测量噪声(图6)。这是因为信号除以衰减系数, 推动着它更接近测量系统的噪底。通过计算信噪比 (SNR)可以看出来。

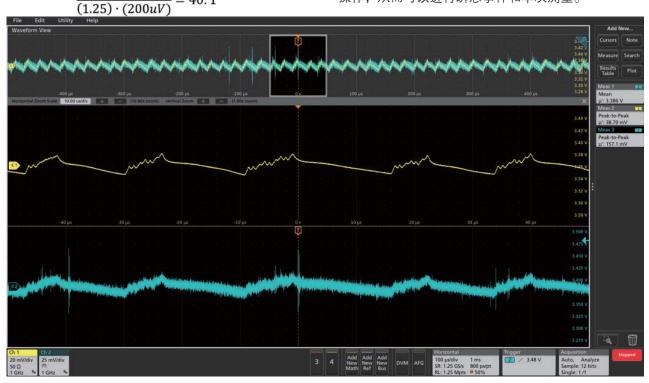
$$SNR = \frac{Vin}{(Attenuation) \cdot (Vnoise)}$$

例如,如果我们选择一个 10 mV 的输入,随机噪声指标是 200μV (这个指标可以查找示波器产品技术资料上的随机噪声,一般用 Vrms 作为单位表示),那么 10x 探头的 SNR 是:

$$\frac{10mV}{(10) \cdot (200uV)} = 5:1$$

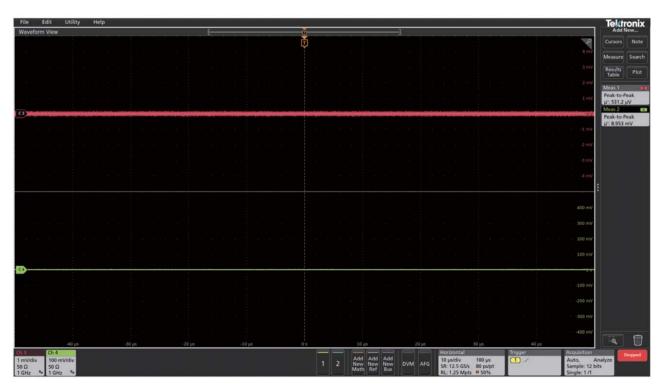
= 40:1

低衰减 1.25x 探头的 SNR 则是:


10mV

垂直标度设置对噪声性能的影响

仪器的噪声性能会随着垂直灵敏度设置放大而放大, 灵敏度范围越高,噪声性能越好。使屏幕上显示的信 号达到最大,仪器可以提供更高的分辨率,可以更准 确地表示信号。垂直灵敏度范围越低,信号上呈现的 峰值噪声就会更多地高于实际情况(图7)。


其他降噪方法

泰克 4、5 和 6 系列 MSO 上的 High Res 等功能允许 用户使用额外采样率,来生成分辨率更高的样点,从 而进一步降低噪声。它根据当前采样率应用独特的有 限脉冲响应 (FIR) 硬件滤波器。这些 FIR 滤波器保持 采样率一定时的最大带宽,同时抑制假信号。与其他 波形平均方式相比, High Res 模式的优势是可以实时 操作,从而可以进行瞬态事件和单次测量。

图 6. 通道 2(蓝色轨迹)显示了传统 10x 无源探头的峰峰值噪声为 157.1 mV,在通道 1 上使用泰克 TPR1000 低噪声纹波 探头时的峰峰值噪声则为 38.7 mV(黄色轨迹)。

低噪声纹波探头测量入门

图 7. 垂直标度对测得随机噪声的影响。这两条通道都没有连接输入。通道 3 在 1 mV/div 时的峰峰值噪声为 521.2 μV,通道 4 在 100 mV/div 时的峰峰值噪声为 8.953 mV。这比通道 4 上报告的噪声多出来大约 17 倍。注意,对通道 4,8.953 mV 不 到满刻度电压的 1%。

选择适当的示波器输入耦合设置

为什么 DC 偏置是低噪声纹波探头测量挑战?

许多设计拥有大容量供电电压,会通过各种 DC/DC 转换器滤除获得各种 IC 和系统要求的供电电压。一 般来说,大容量供电电压要比 IC 需要的电压高出很 多倍。例如,汽车会把 12 V DC 转换成不到 1 V 的供 电电压,满足信息娱乐和人身安全系统中的处理器运 行需求(图 8)。

数据中心中通常会通过 12、24 或 48 V DC 电源为服 务器供电,然后再在主板上转换成其他供电电压。能 够查看链条上从供电输出到 IC 引脚的每个环节,可 以帮助工程师识别从其他电压域传递过来的噪声(图 9)。

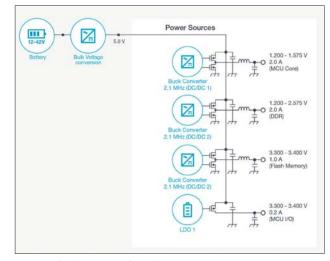


图 8. 汽车信息娱乐供电系统示意图。

应用指南

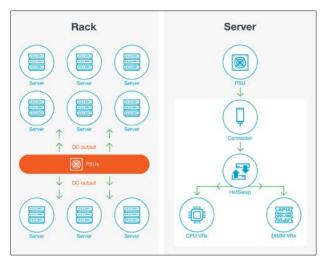


图 9. 服务器供电系统示意图。

正因如此,选择的探头必需提供足够的偏置,来查看 配电网络中测试的所有轨道。这很难实现,因为许多 示波器前端根据选择的垂直灵敏度来限制提供的偏 置。因此伏特/格的设置越低,仪器的偏置越小。(在 上一节中,我们说明了选择正确的垂直灵敏度范围可 能会给测量结果带来明显影响。)高衰减探头通常拥 有更多的偏置功能,但如前所示,其拥有的噪声一般 要高于低衰减探头。

使用示波器 AC 耦合可以避免处理 DC 偏置,其消除 了信号的 DC 成分,但这也会挡住可能发生的低频事 件,比如电压衰落。

使用 DC 耦合模式查看低频事件

如果能够在输入信号中增加足够的 DC 偏置,那么 DC 耦合可以更完整地查看器件特点,因为 AC 耦合 隐藏了低频信息,比如负载变化时的电压线路衰落或 缓降(图 10)。低噪声纹波探头采用专门设计,在示波 器/探头系统中增加足够的偏置范围,在大多数低噪 声纹波探头上支持 DC 耦合。TPR4000 和 TPR1000 拥有 +/- 60V 的 DC 偏置,覆盖了汽车、工业和数据 中心应用中的大多数常用标准。

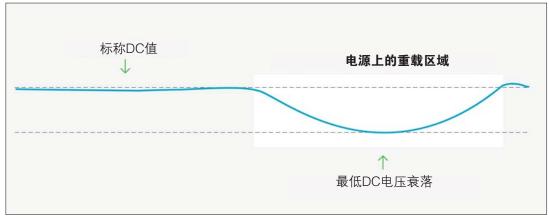


图 10.

应用指南

图 11. 在频率提高时相应扩大输入电压的器件实例。许多 AC 耦合滤波器会漏掉步进间的~2 Hz 频率成分。

某些微处理器和功率管理 IC 采用节电功能,比如动 态频率和电压标度,其会根据工作负载来改变 DC 供 电电压。使用仪器在 AC 耦合模式下很难分析这些特 点,因为仪器没有显示低频信息(图 11)。

使负载达到最小

探头阻抗对低噪声纹波探头测量有什么影响

在进行功率完整性测量时,探测低噪声纹波探头的挑 战在于选择的探测方法既要能够看到 DC 电源上的高 频 AC 成分,又要注意不会给信号的 DC 部分带来太 多负载,以免测量不准确或干扰器件操作。高阻抗探 头为 DC 情况提供了最佳负载,但通常会带来过多的 噪声,而且没有必要的带宽来查看关心的高频事件, 同时还会给信号带来 DC 耦合。50Ω 传输线为低噪声 纹波探头上的高频信号提供了完美的负载,但承担着 DC 信号低阻抗分压器的职责。

进行低噪声纹波探头测量时使用的理想探头应在 DC 中提供非常高的电阻,在 AC 中提供 50Ω 传输线。泰 克 TPR4000 和 TPR1000 低噪声纹波探头提供了 50 kΩ高 DC 阻抗,并在更高频率时跳变到 50Ω。这同时 实现了两大优势,避免了其他探测方案的局限性。

小结

随着功率完整性需求不断提高,低噪声纹波探头分析将继续作为工程师使用的一项重要工具。泰克 TPR4000和TPR1000采用专门设计,解决了查看DC 电源时面临的独特的测量和连接挑战。这些设备与泰 克示波器的捕获和测量功能相结合,为工程师提供了 完美的低噪声纹波探头分析工具。

如需所有最新配套资料,请立即与泰克本地代表联系!

或登录泰克公司中文网站:www.tek.com.cn

泰克中国客户服务中心全国热线: 400-820-5835

泰克科技(中国)有限公司

上海市浦东新区川桥路1227号 邮编: 201206 电话: (86 21) 5031 2000 传真: (86 21) 5899 3156

泰克成都办事处

成都市锦江区三色路38号 博瑞创意成都B座1604 邮编: 610063 电话: (86 28) 6530 4900 传真: (86 28) 8527 0053

泰克北京办事处 北京市海淀区花园路4号

通恒大厦3楼301室 邮编: 100088 电话: (86 10) 5795 0700 传真: (86 10) 6235 1236

泰克西安办事处 西安市二环南路西段88号 老三届世纪星大厦26层L座 邮编:710065 电话:(86 29) 8723 1794 传真:(86 29) 8721 8549

泰克上海办事处 上海市长宁区福泉北路518号 9座5楼 邮编: 200335 电话: (86 21) 3397 0800 传真: (86 21) 6289 7267

泰克武汉办事处 武汉市洪山区珞喻路726号 华美达大酒店702室 邮编: 430074 电话: (86 27) 8781 2760

泰克深圳办事处 深圳市深南东路5002号 信兴广场地王商业大厦3001-3002室 邮编:518008 电话:(86 755) 8246 0909 传真:(86 755) 8246 1539

泰克香港办事处 香港九龙尖沙咀弥敦道132号 美丽华大厦808-809室 电话: (852) 2585 6688 传真: (852) 2598 6260

更多宝贵资源,敬请登录:WWW.TEK.COM.CN

◎ 年泰克科技版权所有,侵权必究。泰克产品受到美国和其他国家已经签发及正在申请的专利保护。本资料中的信息代替此前出版的所有材料中的信息。本文中的技术 数据和价格如有变更,恕不另行通告。TEKTRONIX 和 TEK 是泰克科技公司的注册商标。本文中提到的所有其他商号均为各自公司的服务标志、商标或注册商标。 053119 DD 51C-61562-0

