

C.A 6165

电气安规多功能测试仪

1	概述		3
	1.1 警	告与注释	3
	1.1.1	安全警告	3
	1.1.2	与测量功能安全有关的警告	3
	1.1.3 🎊	7.器标志	4
2	於嬰	珠光	5
2	21 計	1曲人2	5
	Z.1 H	」 田 仮	
3	仪器	运行运行	7
	3.1 按	F键的一般含义	7
	3.2 魚	h摸手势的一般含义:	7
	3.3 ぞ	·号与信息	8
٨	岜 沙测试		11
-	平 仄(図)叫 //1 単	i 次测试测量	
	411	日初检验	
	412	口仍也想	
	413	ΨΔLWW	
	4.1.4	HV DC	
	4.1.5	HV AC 可编程	
	4.1.6	HV DC 可编程	
	4.1.7	绝缘电阻 (Riso. Riso-S)	
	4.1.8	临界漏电流(Isub. Isub-S)	
	4.1.9	差分漏电流	
	4.1.10	接地漏电流	
	4.1.11	接触漏电流	
	4.1.12	功率	
	4.1.13	漏电流与功率	
	4.1.14	放电时间	
	4.1.15	功能检验	
_	و و		
5	雅伊	> ₩/	
	5.1 炤	}町	
	5.2 伪	2修	

1.1 警告与注释

1.1.1 安全警告

操作员在使用 C.A 6165 测试仪进行各种测量时,为了保证操作员的高度安全性,同时为了保证被测设备不会受到损害,必须考虑下列常规警告:

- ▶ 仔细阅读本说明手册,否则使用本测试仪可能会危及操作员人身安全,损坏仪器或被测设备!
- ▶ 请注意仪器上的警告标志!
- ▶ 如果未能按照本说明手册规定的方式使用测试仪,则会削弱测试仪自身提供的保护!
- ▶ 如果观察到仪器与配件存在任何受损情形,则切勿使用!
- ▶ 定期检查仪器与配件是否能够正确工作,以免因误导而发生危险。
- ▶ 要考虑众所周知的注意事项,以免在处理危险电压时,发生触电危险。
- ▶ 只能使用分销商提供的标配或可选测试配件!
- ▶ TC1 (测试与通信)连接器应只能连接至 Chauvin Arnoux 提供或批准的测试适配器。
- ▶ 只能使用接地的电源插座为仪器供电!
- ▶ 若熔断器发生熔断,则应参照本说明手册第 5.1 章熔断器进行更换!
- > 仪器的维修和校准程序必须仅由合格的授权人员来执行!
- ▶ Chauvin Arnoux 对用户编程的 Auto Sequences®的内容不承担任何责任!

1.1.2 与测量功能安全有关的警告

1.1.2.1 HV AC、HV DC、HV AC(可编程)及 HV DC(可编程)

- ▶ 测试过程中,对仪器高压输出端施加高达 5 kVac 或 6 kVoc 的危险电压。因此,进行上述测试时,必须考虑特殊的安全性!
- > 只有熟知各种危险电压的技能娴熟的人员方可进行测量!
- ▶ 如果观察到存在损害或异常情况(测试引线、仪器),切勿进行测试!
- ▶ 测量期间,切勿触摸暴露的探头尖端、待测连接设备或其他任何带电零件。也要确保无人会接触这些 设备或零件!

- ▶ 切勿触摸障碍物前方测试探头的任何部位(手指应置于探头指套后方)-可能存在触电危险!
- ▶ 尽量使用最小跳闸电流,这是一种比较好的做法。

1.1.2.2 差分漏电流、接地漏电流、接触漏电流、功率、漏电流与功率

负载电流如超过 10A,则会导致熔断器座与通/断开关出现高温!对于负载电流超过 10A 的被测装置, 建议运行时间不要操作 15 分钟。仪器经过恢复期冷却降温之后,方可进行测试!对于负载电流超过 10A 的测 量,最大间歇占空比为 50%。

1.1.2.3 绝缘电阻

▶ 测量过程中或者测试对象充分放电之前,切勿触摸测试对象!触电危险!

1.1.3 仪器标志

阅读说明手册,特别注意安全操作«。此符号表示需要采取行动!

》 测试期间,端子存在危险高压。应对所有注意事项加以考虑,以免出现触电危险。

C € 设备合格证上的标记证明设备符合欧盟 EMC、LVD 以及 ROHS 条例要求。

▶ 木识タ应从

■ 本设备应作为电子垃圾进行回收。

2 仪器描述

2.1 前面板

图 2.1:前面板

1	电源连接器
2	F1, F2 熔断器 (F 5 A / 250 V)
3	F3, F4 熔断器 (T 16 A / 250 V)
4	通/断开关
5	外部测试适配器用测试接头 TC1
6	电源测试插座
7	P/S (探头)连接器
8	小键盘
9	高压输出端连接器
10	高压输出端警告灯
11	导通性测试用连接器
12	绝缘/临界漏电流测试用连接器
13	放电时间测试用连接器
14	带触摸屏的彩色 TFT 显示器
15	控制输出端
16	控制输入端
17	RS232-1多功能端口
18	RS232-2 多功能端口
19	以太网连接器

20	USB 连接器
21	MicroSD卡槽

3 仪器运行

C.A 6165 可通过小键盘或触摸屏进行操作。

3.1 按键的一般含义

	鼠标按键用于: -选择适当的选项
ENTER	Enter (回车) 按键用于: - 确认所选选项 - 开始和停止测量
ESC	Escape(退出)按键用于: - 返回至上一菜单,且不作任何改变. - 中止测量
OPTION	Option(选项)按键用于: - 展开控制面板中的列 - 显示选项的详细视图
HV TEST	耐压测试按键用于: -开始和停止耐压测试

3.2 触摸手势的一般含义:

R	轻击(用手指快速接触表面),用于: - 选择适当的选项 - 确认所选选项 - 开始和停止测量
(m)	上/下滑动(按压、移动、抬起),用于: - 滚动查看同级内容 - 在同级视图之间导航
Kg	 长按(手指接触表面,时间至少持续1秒),用于: 选择其他按键(虚拟键盘) 从单个测试画面中输入交叉选择器
	轻击 Escape 图标,用于: - 返回至上一菜单,且不作任何改变. - 中止测量

3.3 符号与信息

Error External voltage on Iso+ is too high!	在预测试中,检测到端子 ISO/SUB 与 PE 之间的外部电压过高。取消 测量。按下 确认 继续。
ок	
Warning! Leakage is high(≽3.5 mA). Would you like to proceed?	在预测试中,检测发现漏电流可能较大。对被测装置通电之后,可能 会流出危险的漏电流(超过 3.5mA) 。 选择 是 开始测量,或者选择 否 取消测量。
YES NO	
Error Measurment stopped because of too high leakage current. OK	实测漏电流 (Idiff、Ipe、Itouch) 超过 20 mA。中止测量。按下 确认 继 续。
Error	负载电流超过放电时间测试的电流上限(10A)。中止测量。按下 确 认 继续。
l load is too high (>10 A)!	在功率与漏电流测试中,负载电流超过 10A,且持续时间超过 4 分 钟(移动平均法)。因安全原因,停止测量。按下 确认 继续。
ок	
Error	负载电流超过功率与漏电流测试的电流上限(16 A)。中止测量。 按下 确认 继续
l load is too high (>16 A)!	
ок	
Warning! Instrument will restart to apply new settings. OK	警告: 重新启动仪器以刷新以太网设置。更改以太网设置之后, 退出设置菜单,即出现上述消息。按下 确认 继续。
	仪器过热。不得进行测量,直至此图标消失。按下 确认 继续。
••	应接通被测装置电源(确保测试的是完整电路)。
	在绝缘电阻测量中,测试电压过低。
110	测量结果按照 110 V 电压进行调整。

	红点表示测量期间测量到较高漏电流的阶段。只有在测量过程中启动 相位反转之时方可适用。
CAL	在导通性 P/S - PE 测量中,未补偿测试引线电阻。
CAL	在导通性 P/S - PE 测量中,补偿了测试引线电阻。
	警告!
	仪器输出端存在/将存在高压! (耐压测试电压、绝缘测试电压或电源 电压)。
L	警告!
4	仪器输出端存在/将存在非常高的危险电压! (耐压测试电 压)。
\checkmark	
	通过测试。
×	未通过测试。
	根据输入端子的条件,可开始进行测量; 对于显示的其它警告与消息,均应加以考虑。
	根据输入端子的条件,不得开始测量,应注意所显示的警告 与消息。
	进入下一测量步骤
	停止测量。
•••	展开控制面板中的列。

4.1 单次测试测量

4.1.1 目视检验

图 4.1: 目视检验菜单

测试电路

图 4.2: 目视检验测试电路

目视检验程序

- ▶ 选择适当的目视检验。
- ▶ 开始检验。
- ▶ 目视检验电气装置/设备。
- ▶ 对被检项目张贴合适的标签。
- ▶ 检验结束。
- ▶ 保存结果(可选)。

图 4.3: 目视检验结果示例

4.1.2 导通性测试

图 4.4: 导通性测试菜单

测试结果/子结果

R.....电阻

△U………..电压降按照 10 A 进行调整

测试参数

输出连接	输出端 [4 线, P-PE]
测试电流	I 输出 [0.2 A, 4 A, 10 A, 25 A]
持续时间:	持续时间 [断开, 2 s180 s]
△U 测试*	启动 △U 测试 [接通、断开]
导线横截面积*	△U测试用导线横截面积 [0.5 mm2…ε 6mm2]

测试限值

上限 (R)	上限[断开, 0.01 Ω9 Ω, 定制]
下限 (R)	下限[断开, 0.01 Ω9 Ω, 定制]
上限(ΔU)*	上限 [1.0 V … 5.0 V]

* 仅适用于测试电流为 10 A 之时。

测试电路

图 4.5: 四线导通性测量

图 4.6: P/S - PE 导通性测量

导通性测量程序

- ▶ 选择导通性功能。
- ▶ 设置测试参数/限值。
- ▶ 将测试引线连接至仪器端子 C1、 P1、 P2 以及 C2(四线),也可以将测试引线连接至端子 P/S (两线测量 P/S - PE 导通性)。
- ▶ 补偿测试引线电阻(可选)。
- ▶ 将测试引线连接至被测装置。
- ▶ 开始测量。
- ▶ 既可手动停止测量,也可通过设置定时器来停止测量。
- ▶ 保存结果(可选)。

图 4.7: 导通性测量结果示例

4.1.2.1 测试引线电阻补偿

本章描述了在使用**导通性(输出端 = P/S** - **PE)**功能时,如何补偿测试引线电阻。补偿测试引线电阻之后,可以消除测试引线电阻以及仪器内部电阻对实测电阻的影响。

测试引线电阻补偿连接

图 4.8: 测试引线短路

测试引线电阻补偿程序

选择**导通性**功能。必须将参数"输出端"设置成 P/S - PE。 将测试引线连接到仪器,并将测试引线短路在一起,参见 图 4.8。

图 4.9: 未补偿及已补偿引线电阻的测量结果

注:

测试引线电阻补偿须采用已设置的测试电流(1输出)。

4.1.3 HV AC

有关本仪器的安全使用更多详情,请参阅第 1.1 章 警告与注释。

图 4.10: HV AC 测试菜单

测试结果/子结果

I.....测试电流
 U...... 实测交流测试电压
 Ir测试电流的阻性部分
 Ic测试电流的容性部分

测试参数

交流测试电压	U 测试 [100 V5000 V,阶跃值:10 V]
持续时间:	T 结束 [断开, 1 s120 s]

测试限值

上限(1)	上限 [0.5 mA100 mA]
下限(1)	下限[断开, 0.5 mA100 mA]

测试电路

图 4.11: HV AC 测量

HV AC 测量程序

- ▶ 选择 HV AC 功能。
- ▶ 设置测试参数/限值。
- ▶ 将耐压测试引线连接至仪器端子 HV(~,+)与 HV(~,-)。
- ▶ 将耐压测试引线连接至被测装置。
- ▶ 开始测量。
- ▶ 既可手动停止测量,也可通过设置定时器来停止测量。
- ▶ 保存结果(可选)。

图 4.12: HV AC 测量结果示例

注:

仪器通电之后首次进行耐压测量时(若启用了密码保护)或者启用或更改密码之后首次进行耐压测量时,均 需要输入密码,以启动耐压测试。

4.1.4 HV DC

<u> 重要</u>安全说明

有关本仪器的安全使用更多详情,则请参阅第 1.1 章 警告与注释。

图 4.13: HV DC 测试菜单

测试结果/子结果

U...... 实测测试电压 I.....测试电流

测试参数

直流测试电压	U 测试 [500 V6000 V, 阶跃值: 50 V]
持续时间:	T 结束 [断开, 1 s120 s]

测试限值

上限 (1)	上限 [0.05 mA10.0 mA]
下限(1)	下限[断开, 0.05 mA10.0 mA]

测试电路

图 4.14: HV DC 测量

HV DC 测量程序

选择 HV DC 功能。 设置测试参数/限值。 将耐压测试引线连接至仪器端子 HV(~,+)与 HV(~,-)。 将耐压测试引线连接至被测装置。 开始测量。 既可手动停止测量,也可通过设置定时器来停止测量。 保存结果(可选)。

∽ н∨	DC	09:40	т ну DC	09:41
1	0.27 mA		1 >0.15 mA 🗙	
U	3.16 kV		u 3.15 kv	
U test t end	3000 V 10 s	?	U test 3000 V t end 10 s	?
L limit(l) H limit(l)	Off 2.00 mA		L limit(l) Off H limit(l) 0.15 mA	

图 4.15: HV DC 测量结果示例

注:

仪器通电之后首次进行耐压测量时(若启用了密码保护)或者启用或更改密码之后首次进行耐压测量时,均 需要输入密码,以启动耐压测试。

4.1.5 HV AC 可编程

<u> 重要安全说明</u>

有关本仪器的安全使用更多详情,则请参阅第 1.1 章 警告与注释。

在 HV AC 可编程测试中,可以根据 图 4.16.设置高电压随时间变化的情况。

图 4.16: HV AC 可编程测试的电压/时间关系图

图 4.17: HV AC 可编程 测试菜单

测试结果/子结果

I测试电流
 U...... 实测测试电压
 Ir测试电流的阻性部分
 Ic测试电流的容性部分

测试参数

交流测试起始电压	U 起始 [100 V5000 V,阶跃值:10 V]
交流测试电压	U 测试 [100 V5000 V,阶跃值:10 V]
起始电压持续时间	T 起始[1 s120 s]
斜坡持续时间	T 斜坡 [2 s60 s]
测试电压持续时间	T 结束 [断开, 1 s120 s]

测试限值

上限 (I)	上限 [0.5 mA100 mA]
下限(I)	下限[断开, 0.5 mA100 mA]

测试电路

图 4.18: HV AC 可编程测试

HV AC 可编程测试程序

- ▶ 选择 HV AC 可编程功能。
- ▶ 设置测试参数/限值。
- ▶ 将耐压测试引线连接至仪器端子 HV(~,+)与 HV(~,-)。
- ▶ 将耐压测试引线连接至被测装置。
- ▶ 开始测量。
- ▶ 既可手动停止测量,也可通过设置定时器来停止测量。
- ▶ 保存结果(可选)。

图 4.19: HV AC 可编程测量结果示例

注:

仪器通电之后首次进行耐压测量时(若启用了密码保护)或者启用或更改密码之后首次进行耐压测量时,均 需要输入密码,以启动耐压测试。

4.1.6 HV DC 可编程

<u> 重要安全说明</u>

有关本仪器的安全使用更多详情,则请参阅第 1.1 章 警告与注释。

对于 HV DC 可编程测试,可以根据 图 4.16 设置高压的时间依赖性。

图 4.20: HV DC 可编程测试菜单

测试结果/子结果

测试参数

直流测试起始电压	U 起始 [500 V6000 V,阶跃值: 50 V]
直流测试电压	U 测试 [500 V6000 V,阶跃值:50 V]
起始电压持续时间	T 起始[1 s120 s]
斜坡持续时间	T 斜坡 [2 s60 s]
测试电压持续时间	T 结束 [断开, 1 s120 s]

测试限值

上限 (I)	上限 [0.05 mA10.0 mA]
下限 (I)	下限[断开, 0.05 mA10.0 mA]

测试电路

图 4.21: HV DC 可编程测试

HV DC 可编程测试程序

- ▶ 选择 HV DC 可编程功能。
- ▶ 设置测试参数/限值。
- ▶ 将耐压测试引线连接至仪器端子 HV(~,+)与 HV(~,-)。
- ▶ 将耐压测试引线连接至被测装置。
- ▶ 开始测量。
- ▶ 既可手动停止测量,也可通过设置定时器来停止测量。
- ▶ 保存结果(可选)。

图 4.22: HV DC 可编程测量结果示例

注:

仪器通电之后首次进行耐压测量时(若启用了密码保护)或者启用或更改密码之后首次进行耐压测量时,均 需要输入密码,以启动耐压测试。

4.1.7 绝缘电阻 (Riso, Riso-S)

T RISO	03:19	1 R 180	03:19	± R ISO	03:20
				RisoMQ	
Riso MΩ	?	Riso-S MΩ	?	 Riso-S MΩ	?
UmV		Um V		Um V	
Ulso 500 V Duration 2 s Type Riso		Uiso 500 V Duration 2 s Type Riso-S		Uiso 500 V Duration 2 s Type Riso, Riso-S	
L Limit(Riso) 1.00 MG H Limit(Riso) Off L Limit(Riso-5) Off		L Limit(Riso) Off H Limit(Riso) Off L Limit(Riso-5) 1.00 MΩ		L Limit(Riso) 10.0 MΩ H Limit(Riso) Off L Limit(Riso-5) 1.00 MΩ	

图 4.23: 绝缘电阻测试菜单

测试结果/子结果

Riso绝缘电阻 Riso-S绝缘电阻-S Um......测试电压

测试参数

标称测试电压	Uiso [50 V, 100 V, 250 V, 500 V, 1000 V]
持续时间:	持续时间 [断开, 2 s180 s]
测试类型	类型[Riso, Riso-S, (Riso, Riso-S)]
输出连接(Riso)	[ISO(+), ISO(-), 插座 LN-PE, 插座 LN-P/S]
输出连接(Riso-S)	[插座 LN-P/S]

测试限值

上限 (Riso)	上限[断开, 0.10 MΩ10.0 MΩ]
下限 (Riso)	下限[断开, 0.10MΩ10.0 MΩ]
上限 (Riso-S)	上限[断开, 0.10 MΩ10.0 MΩ]
下限 (Riso-S)	下限[断开, 0.10MΩ10.0 MΩ]

测试电路

图 4.24: 绝缘电阻测量(ISO(+), ISO(-))

图 4.25: 绝缘电阻测量(插座 LN - PE)

图 4.26: Riso, Riso-S (插座)

RISO 测量程序

- ▶ 选择 Riso 功能。
- 设置测试参数/限值。
 首先将测试引线连接
 - 首先将测试引线连接至仪器端子 ISO(+), ISO(-),然后将测试引线连接至被测装置,或
- ▶ 将被测装置连接至电源测试插座。对于 Riso-S 测试,还需要将测试引线连接至仪器端子 P/S,然后 再连接被测装置。
- ▶ 开始测量。
- ▶ 既可手动停止测量,也可通过设置定时器来停止测量。
- ▶ 保存结果(可选)。

图 4.27: 绝缘电阻测量结果示例

注:

在 Riso 测量过程中连接 P/S 探头时,还应考虑流经该探头的电流。

4.1.8 临界漏电流(Isub, Isub-S)

图 4.28: 临界漏电流测试菜单

测试结果/子结果

lsub临界漏电流 lsub-S临界漏电流-S

测试参数

测试类型	类型[Isub, Isub-S, (Isub, Isub-S)]
输出电压	输出 [40 Vac]
持续时间:	持续时间 [断开, 2 s 180 s]
输出连接(lsub)	[SUB1, SUB2, 插座 LN-PE, 插座 LN-P/S]
输出连接(Isub-S)	[插座 LN-P/S]

测试限值

上限 (Isub)	上限 [断开, 0.25 mA15.0 mA, 定制]

下限 (Isub)	下限[断开, 0.25 mA15.0 mA, 定制]
上限(Isub-S)	「上限[断开, 0.25 mA15.0 mA]
下限(Isub-S)	下限[断开, 0.25 mA15.0 mA]

测试电路

图 4.29: 临界漏电流测量(SUB1, SUB2)

图 4.30: 临界漏电流测量(插座 LN - PE)

图 4.31: 临界漏电流测量,临界漏电流-S(插座)

临界漏电流测量程序

- AAA 选择**临界漏电流**功能。
- 设置测试参数/限值。
- 首先将测试引线连接至仪器端子 SUB1、SUB2, 然后将测试引线连接至被测装置, 或

将被测装置连接至电源测试插座。对于 lsub-S 测试,还需要将测试引线连接至仪器端子 P/S,然后再连接被测装置。

- ▶ 开始测量。
- ▶ 既可手动停止测量,也可通过设置定时器来停止测量。
- ▶ 保存结果(可选)。

图 4.32: 临界漏电流测量结果示例

注:

在临界漏电流测量过程中,连接 P/S 探头之后,还应考虑流经该探头的电流。

4.1.9 差分漏电流

🛨 Differential Leakage	13:30
ldiffmA	
PW	?
Duration Off Change YES Delay 5 s	
H Limit(ldiff) Off L Limit(ldiff) Off	444

图 4.33: 差分漏电流测试菜单

测试结果/子结果

Ⅰ差分差分漏电流 P......功率

测试参数

持续时间:	持续时间 [断开, 2 s180 s]
改变状态	改变[是、否]
	是: 仪器分两步测量漏电流, 其中, 这两个测量步骤是连续的, 而且相互之间延迟*。首先对
	电源测试插座的右侧带电输出端施加相电压,
	其次对该插座的左侧带电输出端施加相电压。
	否: 仅对电源测试插座的右侧带电输出端施加相电压。
*延迟时间	延迟 [0.2 s … 5 s]

测试限值

上限(1差分)	上限[断开, 0.25 mA15.0 mA, 定制]
下限(1差分)	下限[断开, 0.25 mA15.0 mA, 定制]
输出连接	[插座 L,N - PE,P/S]

测试电路

图 4.34: 差分漏电流测量

差分漏电流测量程序

- ▶ 选择**差分漏电流**功能。
- ▶ 设置测试参数/限值。
- ▶ 将被测装置连接至电源测试插座,并且还可选择将被测装置连接端子 P/S。
- ▶ 开始测量。
- ▶ 既可手动停止测量,也可通过设置定时器来停止测量。
- ▶ 保存结果(可选)。

图 4.35: 差分漏电流测量结果示例

4.1.10 接地漏电流

图 4.36: 接地漏电流测试菜单

测试结果/子结果

I接地漏电流接地漏电流 P.....功率

测试参数

持续时间:	持续时间 [断开, 2 s 180 s]
改变状态	改变[是、否]
	是: 仪器分两步测量漏电流, 其中, 这两个测量步骤是连续的, 而且相互之间延迟*。首
	先对电源测试插座的右侧带电输出端施加相电压,
	其次对该插座左侧带电输出端施加相电压。
	否: 仅对电源测试插座的右侧带电输出端施加相电压。
*延迟时间	延迟 [0.2 s … 5 s]
输出连接	[插座 L,N - PE]

测试限值

上限(接地漏电流)	上限[断开, 0.25 mA15.0 mA, 定制]	
下限(接地漏电流)	下限[断开, 0.25 mA15.0 mA, 定制]	

测试电路

图 4.37: 接地漏电流测量

接地漏电流测量程序

- 选择**接地漏电流**功能。 ≻
- 设置测试参数/限值。
- AAAAA 将被测装置连接至电源测试插座。
- 开始测量。
- 既可手动停止测量,也可通过设置定时器来停止测量。 保存结果(可选)。

图 4.38: 接地漏电流测量结果示例

4.1.11 接触漏电流

🛨 Touch Leakage	
ltou mA	
PW	?
Duration Off Change YES Delay 5 s	
H Limit(Itou) Off L Limit(Itou) Off	444

图 4.39: 接触漏电流测试菜单

测试结果/子结果

Itou接触漏电流 P......功率

测试参数

持续时间:	持续时间 [断开, 2 s180 s]
改变状态	 改变[是、否] 是: 仪器分两步测量漏电流,其中,这两个测量步骤是连续的,而且相互之间延迟*。首先对电源测试插座的右侧带电输出端施加相电压,其次对该插座左侧带电输出端施加相电压。 否: 仅对电源测试插座的右侧带电输出端施加相电压。
*延迟时间	延迟 [0.2 s … 5 s]
输出连接	[插座 L,N - PE,P/S]

测试限值

上限(Itou)	上限[断开, 0.25 mA15.0 mA]
下限 (Itou)	下限[断开, 0.25 mA15.0 mA]

测试电路

图 4.40: 接触漏电流测量

接触漏电流测量程序

- ▶ 选择**接触漏电流**功能。
- ▶ 设置测试参数/限值。
- ▶ 将被测装置连接至电源测试插座。将测试引线分别连接至仪器和被测装置的端子 P/S。
- ▶ 开始测量。
- ▶ 既可手动停止测量,也可通过设置定时器来停止测量。
- ▶ 保存结果(可选)。

图 4.41: 接触漏电流测量结果示例

4.1.12 功率

Ð	Power			08:59
P	w	THDu	%	
S	VA	THDi	A	E
Q	VAr	CosΦ		
PF		1.0	A	?
		U	V	
Dura	tion	Ot	ff	
H Lin L Lin	nit(P) nit(P)	01		444

图 4.42: 功率测量菜单

测试结果/子结果

P	有功功率
S	视在功率
Q	无功功率
PF	功率系数
THDu	总谐波失真电压 THDi总谐波
失真电流	
Cos Ф	cosinus Φ
1	负载电流
U	电压

测试参数

持续时间:	持续时间 [断开, 2 s 180 s]
输出连接	[插座 L - N]

测试限值

上限 (P)	上限[断开, 10W3.50 kW, 定制]
下限 (P)	下限[断开, 10W3.50 kW, 定制]

测试电路

图 4.43: 功率测量

功率测量程序

选择**功率**功能。 设置测试参数/限值。 将被测装置连接至电源测试插座。 开始测量。 既可手动停止测量,也可通过设置定时器来停止测量。 保存结果(可选)。

	09:22 ⁽¹⁾ Power	09:20
P 1881 W 💙 THDu 3.0 %	P 2.33 kW 🗙 THDu 2.3 %	
S 1882 VA THDi 261 mA	S 2.33 kVA THDi 237 mA	
Q 62.2 VAr CosΦ 1.00i	Q 79.4 VAr CosØ 1.00i	
PF 1.00i I 8.49 A	E PF 1.00i I 10.52 A	
U 222 V	? U 222 V	?
Duration 3 s H Limit(P) 1.90 kW L Limit(P) Off	Duration 3 s H Limit(P) 1.90 kW L Limit(P) Off	• • •

4.1.13 漏电流与功率

🖆 Leak's & Power			13:46	
P Itou Idiff S	W mA MA VA	THDu THDi CosФ I	% A 	
Q PF	VAr 	U	V	
Durat Chan Delay	ion ge	Y		444

图 4.45: 漏电流与功率测量菜单

测试结果/子结果

P	有功功率
Itou	.接触漏电流
Idiff	.差分漏电流
S	视在功率
Q	.无功功率
PF	.功率系数
THDu	总谐波失真电压 THDi总谐波
失真电流	
Cos Φ	.cosinus Φ
1	.负载电流
U	.电压

测试参数

持续时间:	持续时间 [断开, 2 s180 s]
改变状态	 改变[是、否] 是: 仪器分两步测量漏电流,其中,这两个测量步骤是连续的,而且相互之间延迟*。首先 对电源测试插座的右侧带电输出端施加相电压,其次对该插座左侧带电输出端施加 相电压。 否: 仅对电源测试插座的右侧带电输出端施加相电压。
*延迟时间	延迟 [0.2 s … 5 s]
输出连接	[插座 L − N, 插座 L,N − PE,P]

测试限值

上限 (P)	上限[断开, 10W3.50 kW, 定制]
下限 (P)	下限[断开, 10W3.50 kW, 定制]
上限(差分)	上限[断开, 0.25 mA15.0 mA, 定制]
下限(差分)	下限[断开, 0.25 mA15.0 mA, 定制]
上限 (Itou)	上限[断开, 0.25 mA15.0 mA]
下限 (Itou)	下限[断开, 0.25 mA15.0 mA]

测试电路

图 4.46: 漏电流与功率测量

漏电流与功率测量程序

- 选择**漏电流与功率**功能。 ≻
- 设置测试参数/限值。
- AAAA 将被测装置连接至电源测试插座,并且还可选择将被测装置连接端子 P/S。
- 开始测量。
- 既可手动停止测量,也可通过设置定时器来停止测量。
- ⊳ 保存结果(可选)。

🗂 Leak's & Power	13:48	🛨 Leak's & Power	09:38
P 1927 W Y THDu 2.3 %		P 2.34 kW X THDu 2.5%	
Idiff 0.00 mA Cost 1.00 c		Idiff 0.00 mA ✓ CosΦ 1.00i	
S 1928 VA I 8.57 A Q 41.4 VAr U 225 V	∷	S 2.34 kVA I 10.54 A Q 81.5 VAr U 222 V	
PF 1.00c	P	PF 1.00i	F
Change YES Delay 5s H Limit(P) 2.00 kW		Change YES Delay 5s H Limit(P) 2.00 kW	•••

图 4.47: 漏电流与功率测量结果示例

4.1.14 放电时间

图 4.48: 放电时间测试菜单

测试结果/子结果

t放电时间 Up......测试中存在的电源电压峰值

测试参数

极限电压	极限 U [34 V, 60 V, 120 V]
输出连接	输出 [外部、插座]
测试模式	模式 [手动、自动]
自动模式延迟时间	延迟 [2 s …30 s]

测试限值

	放电时间极限	极限(t) [1 s, 5 s]
--	--------	-------------------

测量原理(输出=外部)

放电时间功能的测量原理如下:

D 被测装置通过外部插座连接电源电压。仪器对电压进行监控(电源或内部接头),并在内部存储电压峰值。

阶段 ② 被测装置与电源断开,测试端子的电压开始下降。电压有效值降幅达到 10V 之后,仪器立即启动定时器。

阶段③ 电压降至低于内部计算电压值之后,定时器停止工作。仪器按照电压值处于最高位之时断开电源所应出现 的数值,重新计算实测时间。

测试电路(输出=外部)

图 4.50: 放电时间测试 (输出=外部)

放电时间测试程序(输出=外部)

- ▶ 选择放电时间功能。
- ▶ 设置测试参数/限值。
- ▶ 将测试引线分别连接至仪器和被测装置的放电时间(DISCHARGING TIME)端子。
- ▶ 将被测装置连接至电源,并通电。
- ▶ 开始测量。
- ▶ 将被测装置断开电源,手动停止测量。
- ▶ 保存结果(可选)。

图 4.51: 放电时间测量结果示例(输出=外部)

测量原理(输出=插座)

放电时间功能的测量原理如下:

阶段 ① 被测装置与电源测试插座连接。仪器监控电源电压,并在内部存储电压峰值。

阶段② 仪器将被测装置与电源断开,电源接头的电压开始下降。始终应在达到峰值电压之时断开电源。

阶段 🕄 电压降至低于极限值之后,定时器停止工作。

测试电路(输出=插座)

图 4.52: 放电时间测试 (输出=插座)

放电时间测试程序(输出=插座)

- 选择放电时间功能。 ۶
- 设置测试参数/限值。 ≻
- 将被测装置与仪器上的电源测试插座相连接。
- 开始测量。
- 既可手动停止测量,也可以自动停止。
- 保存结果(可选)。

Discharging Time 13:31		Discharging Time	
0 0		56 x	
		t disch Ə∎Os 🔨	
Up 326 V	?	Up 337 V UIn:	?
Limit U 60 V Output Socket		Limit U 60 V Output Socket	
Mode Manual Limit(t) 1 s		Mode Manual Limit(t disch) 1 s	•••

图 4.53: 放电时间测量结果示例(输出=插座)

4.1.15 功能检验

Inspection	11:25	Inspection		11:26
Functional		Functional		
mechanical operation	?	mechanical operation	Image: A start of the start	Р
electrical operation		electrical operation	 Image: A start of the start of	
safety relevant functions		safety relevant functions		×
	444			444

图 4.54: 功能检验起始菜单(左)与检验过程中的菜单(右)

测试参数 (可选)

关于可选功率测量测试,参数与限值均与功率单次测试的设置相同,参见第 4.1.12 章功率。

测试电路

图 4.55: 功能检验

功能检验程序

- ▹ 选择适当的功能检验。
- ▶ 开始检验。
- ▶ 对电气装置/设备进行功能检验。
- ▶ 通过电源测试插座(可选)进行功率测量测试。
- ▶ 对被检装置/设备张贴适当的标签。
- ▶ 检验结束。
- ▶ 保存结果(可选)。

Inspection	04:37
Functional 🧹	
mechanical operation	
electrical operation	
safety relevant functions	?
	444

Inspection		04:38
Functional	×	
mechanical operation		
electrical operation	X	
safety relevant functions		?
		444

图 4.56: 功能检验结果示例

5 维护

5.1 熔断器

前面板上有四个熔断器:

F1, F2: F 5 A / 250 V / (20 5) mm / 1500 A: 旨在保护仪器。关于熔断器的 位置,请参见第 2.1 章前面板。

F3, F4: T 16 A / 250 V / (32 6,3) mm / 1500 A: 防止过流流经电源测试插座。关于熔断器的位置,请参见第 2.1 章前面板。

警告!

- ▶ 在更换熔断器或打开仪器之前,应断开仪器电源,并断开所有测试配件和电源线。
- ▶ 熔断器熔断后,只能使用本文件规定的相同类型熔断器进行更换。

5.2 保修

除非另有规定,我们的保修期为24个月(从设备售出日期起)。可根据要求提供《一般销售条件》的摘录内容。

发生以下情况时不予保修:

- 设备使用不当,或与不兼容设备一起使用;
- 未经制造商的技术人员明确许可而擅自改动设备;
- 由未经制造商批准的人员操作设备;
- 在设备定义未涵盖或用户手册中未说明的某特殊应用中使用。
- 震动、跌落或进水造成的损坏。

法国CA公司(中国)

www.chauvin-arnoux.com.cn

地址:上海市虹口区祥德路381弄3号楼 电话:021-5515-6521 邮箱:info@chauvin-arnoux.com.cn

公众微信名称: 法国CA 微信号 CA65215196

