用户手册 User's Guide

Rev.A1

固件说明: 适用于主程序 RevA1.0 及以上的版本 AT₅800 综合电池测试仪

是常州安柏精密仪器有限公司的商标或注册商标。

常州安柏精密仪器有限公司

Applent Instruments Ltd. 江苏省常州市钟楼区宝龙国际 61-3F 电话: 0519-88805550 传真: 0519-86922220

http://www.anbai.cn

销售服务电子邮件: <u>sales@applent.com</u> 技术支持电子邮件: <u>tech@applent.com</u> ©2005-2021 Applent Instruments.

声明

根据国际版权法,未经常州安柏精密仪器有限公司(Applent Instruments Inc.)事先允许和书面同意,不得以任何形式复制本文内容。

安全信息

- ▲藝告▲危险: 为避免可能的电击和人身安全,请遵循以下指南进行操作。 用户在开始使用仪器前请仔细阅读以下安全信息,对于用户由于未遵守下列条 免责声明 款而造成的人身安全和财产损失,安柏仪器将不承担任何责任。 为防止电击危险,请连接好电源地线。 仪器接地 不可 不可在易燃易爆气体、蒸汽或多灰尘的环境下使用仪器。在此类环境使用任何 电子设备,都是对人身安全的冒险。 在爆炸性气体环境使用仪器 不可 非专业维护人员不可打开仪器外壳,以试图维修仪器。仪器在关机后一段时间 内仍存在未释放干净的电荷,这可能对人身造成电击危险。 打开仪器外壳 不要 如果仪器工作不正常,其危险不可预知,请断开电源线,不可再使用,也不要 试图自行维修。 使用工作异常的仪器
 - 不要

超出本说明书指定的方式使用 超出范围, 仪器所提供的保护措施将失效。

仪器

安全标志:

设备由双重绝缘或加强绝缘保护

废弃电气和电子设备 (WEEE) 指令 2002/96/EC

切勿丢弃在垃圾桶内

声明: anbat, Applent, Applent, characteristic for a standard for a

有限担保和责任范围

常州安柏精密仪器有限公司(以下简称安柏)保证您购买的每一台仪器在质量和计量上都是完全合格的。此项保证不包括保险丝以及因疏 忽、误用、污染、意外或非正常状况使用造成的损坏。本项保证仅适用于原购买者,并且不可转让。

自发货之日起,安柏提供贰年免费保修,此保证也包括 VFD 或 LCD。保修期内由于使用者操作不当而引起仪器损坏,维修费用由用户承担。贰 年后直到仪表终生,安柏将以收费方式提供维修。对于 VFD 或 LCD 的更换,其费用以当前成本价格收取。

如发现产品损坏,请和安柏取得联系以取得同意退回或更换的信息。之后请将此产品送销售商进行退换。请务必说明产品损坏原因,并且预付邮 资和到目的地的保险费。对保修期内产品的维修或更换,安柏将负责回邮的运输费用。对非保修产品的修理,安柏将针对维修费用进行估价,在取得您 的同意的前提下才进行维修,由维修所产生的一切费用将由用户承担,包括回邮的运输费用。

本项保证是安柏提供唯一保证,也是对您唯一的补偿,除此之外没有任何明示或暗示的保证(包括保证某一特殊目的的适应性),亦明确否认所 有其他的保证。安柏或其他经销商并没有任何口头或书面的表示,用以建立一项保证或以任何方式扩大本保证的范围。凡因对在规格范围外的任何原因 而引起的特别、间接、附带或继起的损坏、损失(包括资料的损失),安柏将一概不予负责。如果其中某条款与当地法规相抵触,以当地法规为主,因 此该条款可能不适用于您,但该条款的裁定不影响其他条款的有效性和可执行性。

> 中华人民共和国 江苏省 常州安柏精密仪器有限公司 二〇一四年五月 Rev.C0

目录

声	'明		2
安	全信	息	2
有限	担保	和责任范围	3
目录			4
1.	安装	表和设置向导	10
1.1	1	装箱清单	10
1.2	2	电源要求	10
1.3	3	操作环境	10
1.4	4	清洗	10
1.5	5	仪器手柄	11
2.	概论	<u>k</u>	
2.2	1	引言	12
2.2	2	主要规格	12
2.3	3	主要功能	12
2	2.3.1	测试频率	
4	2.3.2	量程	
4	2.3.3	触发方式	
4	2.3.4	校准功能	
2	2.3.5	系统设置	
ź	2.3.6	接口	
3.	开始	à	14
3.2	1	前面板	14
3.2	2	后面板	15
4.	[ME	AS] 测量显示	16
4.1	1	<综合测试>页	16
2	4.1.1	【类型】	
4	4.1.2	【容量】	
4	4.1.3	【群组】	
4	4.1.4	【配置】	
2	4.1.5	【电压】	17
2	4.1.6	【步数】	17
4.2	2	<组配置>页	
4	4.2.1	【电池电压】	
2	4.2.2	【电池容量】	
4	4.2.3	【电压量程】	
2	4.2.4	【电阻量程】	
4	4.2.5	【连续】	
2	4.2.6	【步数】	
2	4.2.6 4.2.7	【步数】 【测试功能】	

目录 5

4.2.8	8 【电阻上限】	20
4.2.9	9 【电阻下限】	20
4.3	<群组测试结果>页	21
4.4	<电压内阻测试>页	21
4.4.1	1 【短路清零】	22
4.4.2	2 【电 <u>阻量</u> 程】	23
4.4.3	3 【电压量程】	23
4.4.4	4 【电阻上限】	23
4.4.5	5 【电阻下限】	23
4.4.6	6 【电压上限】	23
4.4.7	7 【电压下限】	24
4.5	<直流负载测试>页	24
4.5.1	1 【模式】	24
4.5.2	2 【电压上限设置】	26
4.5.3	3 【电流上限设置】	26
4.5.4	4 <i>【功率上限设置】</i>	26
4.5.5	5 【参数设置】	26
4.6	<直流电源测试>页	27
4.6.1	1 【电压设置】	27
4.6.2	2 【电流设置】	27
4.7	<电池容量测试>页	28
4.7.1	1 【文件】	28
4.7.2	2 【设置】	28
4.8	<文件配置>页	29
4.8.1	1 【电压设置】	29
4.8.2	2 【工作模式】	29
4.8.3	3 【电流下限】	29
4.8.4	4 【电流上限】	29
4.8.5	5 【定时设置】	30
4.8.6	6 【频率设置】	30
4.8.7	7 【漏电流归零】	
5. [SE	ETUP]设置显示	31
5.1		
5.1.1	1 【电阻重柱】	
5.1.2	2 【巴 <u>达里</u> 柱】	
5.1.3	3 【巴丹二版】	
5.1.4	4 【巴坦 广版】	
5.1.5	5 【巴 <u>本</u> 厂版】	
5.1.6	▶ 【忠/左 / 喉】	
5.1.7	/ 【火彩佚玑】	
5.1.8	8 【贝轼巴広】	

5.1.9	9 【负载电流】	33
5.1.1	10 【负载功率】	33
5.1.1	11 【电源电压】	33
5.1.1	12 【电源电流】	33
5.1.1	13 【触发】	33
5.1.1	14 【讯响】	34
5.1.1	15 【不合格停止】	34
5.1.1	16 【速率】	34
5.2	<u 盘设置="">页</u>	34
6. 系统	统配置	35
6.1	<系统配置>页	35
6.1.1	1 【语言】	35
6.1.2	2 【日期】、【时间】	35
6.1.3	3 【账号】、【密码】	36
6.1.4	4 【远程设置】	36
6.1.5	5 【站号】	37
6.1.6	5 【波特率】	37
6.1.7	7 【通讯协议】	37
6.1.8	8 【指令握手】	38
6.1.9	9 【结果发送】	38
6.2	<系统信息>页	38
7. 远和	程控制	39
7.1	关于 RS-232C	39
7.2	关于 USB 转接器(可选)	40
7.3	选择波特率	40
7.4	SCPI 语言	40
8. SCF	PI 命令参考	42
8.1	命令串解析	42
8.1.1	1 <i>命令解析规则</i>	42
8.1.2	2 <i>符号约定和定义</i>	42
8.1.3	3 命令树结构	42
8.1.4	4 命令	43
8.1.5	5 参数	43
8.1.6	6 分隔符	44
8.2	命令参考	44
8.2.1	1 BASIC <i>子系统</i>	44
8.2.2	2 GROUP	46
8.2.3	3 VR <i>子系统</i>	54
8.2.4	4 DCLOAD 子系统	56
8.2.5	5 DCPOWER 子系统	57
8.2.6	5 CAPACITY <i>子系统</i>	58

			目录	7
8.2.	7 I	POWER 子系统	62	
8.2.	8 I	ERROR 子系统	62	
8.2.	9 I	IDN 子系统	62	
9. M	ODBUS	JS(RTU)通讯协议	63	
9.1	数捷	居格式	63	
9.1.	1	<i>命令解析规则</i>	63	
9.1.	2 (CRC-16 计算方法	64	
9.1.	3	响应帧	65	
9.1.	4	无响应	65	
9.1.	5 ;	错误码	65	
9.2	功能	能码	66	
9.3	寄存	字器	66	
9.4	读出	出多个寄存器	66	
9.5	写入	\多个寄存器	67	
9.6	回波	皮测试	68	
10. M	ODBUS	JS(RTU)指令集	69	
10.1	寄	存器总览	69	
10.2	电	3池容量寄存器	72	
10.2	2.1	电池容量测试状态寄存器【2000】	72	
10.2	2.2	<i>电池容量文件号寄存器【</i> 2001】	72	
10.2	2.3	电池容量电池类型寄存器【2002】	73	
10.2	2.4	<i>电池标称电压寄存器【</i> 2003】	73	
10.2	2.5	电池标称容量态寄存器【2005】	73	
10.2	2.6	电池充电电压寄存器【2007】	74	
10.2	2.7	<i>电池充电电流寄存器【</i> 2009】	74	
10.2	2.8	<i>电池放电电流寄存器【</i> 200B】	75	
10.2	2.9	<i>电池截止电压寄存器【</i> 200D】	75	
10.2	2.10	电池容量预放电寄存器【2010】	76	
10.2	2.11	电池容量循环次数寄存器【2011】	76	
10.2	2.12	电池容量测试结果寄存器【2012】	77	
10.3	电	3压内阻测试寄存器	77	
10.3	3.1	<i>电阻量程方式寄存器【</i> 2100】	77	
10.3	3.2	<i>电阻量程号寄存器【</i> 2101】	78	
10.3	3.3	电压量程方式寄存器【2102】	78	
10.3	3.4	<i>电压量程号寄存器【</i> 2103】	78	
10.3	3.5	<i>电阻上限寄存器【</i> 2104】	79	
10.3	3.6	<i>电阻下限寄存器【</i> 2106】	79	
10.3	3.7	电压上限寄存器【2108】	80	
10.3	3.8	电压下限寄存器【210A】	80	
10.3	3.9	电阻测试结果寄存器【210C】	81	
10.3	3.10	电压测试结果寄存器【210E】	81	

10.4	直流负载测试寄存器	81
10.4.1	<i>负载测试状态寄存器【</i> 2200】	
10.4.2	<i>负载测试模式寄存器【</i> 2201】	
10.4.3	<i>电压上限寄存器【</i> 2202】	
10.4.4	<i>电流上限寄存器【</i> 2204】	
10.4.5	功率上限寄存器【2206】	
10.4.6	负载设定值寄存器【2208】	
10.4.7	2 电压结果寄存器【220A】	
10.4.8	电流结果寄存器【220C】	85
10.4.9	功率结果寄存器【220E】	85
10.4.10	0 <i>电阻结果寄存器【</i> 2210】	85
10.5	直流电源测试寄存器	85
10.5.1	<i>电源测试状态寄存器【</i> 2300】	85
10.5.2	<i>电压输出寄存器【</i> 2302】	
10.5.3	<i>电流输出寄存器【</i> 2304】	
10.5.4	电压结果寄存器【2306】	
10.5.5	电流结果寄存器【2308】	
10.5.6	功率结果寄存器【230A】	
10.5.7	2 电阻结果寄存器【230C】	
10.6	综合测试寄存器	
10.6.1	综合测试状态寄存器【2400】	
10.6.2	<i>群组测试文件寄存器【</i> 2401】	
10.6.3	<i>群组测试电池类型寄存器</i> 【2402】	
10.6.4	标称电压值寄存器【2404】	
10.6.5	<i>标称容量值寄存器【</i> 2408】	
10.6.6	群组测试模式寄存器【240A】	
10.6.7	7 群组测试总步数寄存器【240B】	
10.6.8	群组测试当前步数寄存器【240C】	
10.6.9	充电电压值寄存器【2410】	
10.6.10	0 <i>启动电流值寄存器【</i> 2412】	
10.6.1	1 <i>截止电流值寄存器【</i> 2414】	
10.6.12	2 <i>步进电流值寄存器【</i> 2416】	
10.6.13	3 <i>群组测试时间寄存器【</i> 2418】	
10.6.14	4 <i>电压上限值寄存器【</i> 241A】	
10.6.1	5 <i>电压下限值寄存器【</i> 241C】	
10.6.10	6 <i>电流上限值寄存器【</i> 241E】	
10.6.1	7 <i>电流下限值寄存器【</i> 2420】	
10.6.18	8 <i>电阻上限值寄存器【</i> 2422】	
10.6.1	9 <i>电祖下限值寄存器【</i> 2424】	
10.6.20	0 <i>时间上限值寄存器【</i> 2426】	
10.6.2	1 <i>时间下限值寄存器【</i> 2428】	

目录 9

10.6.22	<i>电压量程方式寄存器【</i> 242A】	
10.6.23	<i>电压量程号寄存器【</i> 242B】	
10.6.24	<i>电阻量程方式寄存器【</i> 242C】	
10.6.25	<i>电阻量程号寄存器【</i> 242D】	
10.6.26	<i>群组测试功能寄存器【</i> 242E】	
10.6.27	<i>电压结果寄存器【</i> 2430】	
10.6.28	<i>电流结果寄存器【</i> 2432】	
10.6.29	<i>电阻结果寄存器【</i> 2434】	
10.6.30	<i>时间结果寄存器【</i> 2436】	
11. 处理机	(HANDLER)接口	
11.1 HA	NDLER(PLC)接口	
12. 规格		
11.1 技术	指标	
11.1 一般	规格	
11.2 环境	要求	
11.3 外形	尺寸	

1.安装和设置向导

1.1 装箱清单

正式使用仪器前请首先:

- 1. 检查产品的外观是否有破损、刮伤等不良现象;
- 2. 对照仪器装箱清单检查仪器附件是否有遗失。

如有破损或附件不足,请立即与安柏仪器销售部或销售商联系。

1.2 电源要求

AT5800 测试仪只能在以下电源条件使用:

电压: 200V-240VAC

频率: 47.5-52.5Hz

警告:为防止电击危险,请连接好电源地线 如果用户更换了电源线,请确保该电源线的地可靠连接。

1.3 操作环境

AT5800 必须在下列环境条件下使用: 温度: 0℃~55℃, 湿度: 在 23℃ 小于 70%RH 海拔高度: 0~2000 米

1.4 清洗

不可清洁仪器内部。

注意:不能使用溶剂(酒精或汽油等)对仪器进行清洗。

请使用干净布蘸少许清水对外壳和面板进行清洗。

1.5 **仪器手柄**

仪器手柄可以调节,双手同时握住手柄两侧,向两侧轻拉,然后旋转手柄。手柄可以调节到四个位置,如下图所示: 图 1-1 仪器手柄(示意图,面板图形与实际不符)

可视位置1 【双手同时握住手柄两侧, 向两侧轻拉,直到可自由旋转为止,然 后切换到可视位置2】

可视位置2【双手同时握住手柄两侧, 向两侧轻拉,直到可自由旋转位置,然 后切换到手提位置】

移除手柄位置。(向两侧①拉,直到移除手柄。)

2.概述

2.1 引言

感谢您购买 AT5800 综合安规测试仪。

AT5800 综合安规测试仪采用高性能 ARM 微处理器控制,有卓越的速度和性能。提供五种测试功能:可编程直流 电源、直流电子负载、电池内阻测试、电池容量测试和综合测试。

您可以使用仪器内置的文件编辑器或者使用RS232 接口来编辑综合测试列表,完成高效测试。仪器通过计算机软件可实现数据采集,分析和打印。

支持 USB 磁盘存储器,实时存储采样数据。

2.2 主要规格

AT5800系列技术规格,包含了仪器的基本技术指标和仪器测试允许的范围。这些规格都是在仪器出厂时所能达到的。

六法山阳测试芬国	电阻测试范围	0.0001mΩ~300Ω, 0.5%	
文派内阻测成记围	电压测试范围	0.00001~80.0000V, 0.01%	
	输出最高电压	30V (0.05%, ±6dgt)	
	输出最大电流	15A (0.3%, ±6dgt)	
内部程控电源	纹波电压	5mVrms	
	纹波电流	5mA	
	负载调整率	<1%	
	电压测试范围	0~30.000V, 0.05%	
	由法测试范围	0~3.0000, 0.1%	
内部程控直流负载	电加烈风泡围	0~15.000, 0.2%	
	过流测量范围	0.001~15.000A,	
	最大持续功率	100W	
直流内阻测试	0~1000mΩ		
电池容量测试	0.001~9999.9AH		

2.3 主要功能

2.3.1 测试频率

1kHz,频率稳定性: 20ppm

2.3.2 量程

电池内阻测试: 电阻:使用6量程测试,3mΩ~300Ω 电压:80VDC 量程自动和手动。

直流负载: 电流:使用2量程测试, 3A~15A 电压: 30V

2.3.3 触发方式

内部、外部 (包括手动和远程触发)

2.3.4 校准功能

电池内阻测试:

全量程短路清"0": 消除引线电阻和杂散电压的影响

2.3.5 系统设置

- 1. 讯响设置
- 2. 键盘锁定功能
- 3. 管理员和用户账户,可对管理员设置密码

2.3.6 接口

RS232 远程控制

支持最大 115200bps 的波特率,兼容 SCPI 协议, MODBUS 协议

Handler 接口

全光耦隔离,内置上啦电阻的输入输出口 支持内部 5V 和外部最大 35V 电源 输入:触发信号 输出:分选结果信号,测量同步信号;

3.开始

本章您将了解到以下内容:

- 前面板和后面板
 - 测试端的连接

3.1 前面板

图 3-1 前面板

表 3-1 前面板功能描述

序号	功能
	电源开关。轻触式按键
1	▲ 警告:为了确保仪器的稳定工作,仪器在关机后需要等待 10 秒钟才允许
	再次启动。
2	USB 磁盘接口
3	功能键
4	侧边栏功能键
5	状态灯
6	测试端口
7	数字键盘
8	方向键
9	液晶显示屏

3.2 后面板

图 3-2 后面板

表 3-2 后面板功能描述

序号	功能
1	接地柱
2	~220V 交流电源输入
3	RS232/485 通讯端口
4	HANDLER 接口

4.[Meas] 测量显示

4.1 <综合测试>页

无论在什么页面,您只要按【Meas】快捷键,在侧边栏选择【群组测试】进入<综合测试>页。 <**综合测试**>页主要进行综合功能测试,电池激活、电压内阻、充电测试、过充测试、直流内阻、负载测试、过放测试、 短路测试、恢复测试的组合测试。

图 4-1 <综合测试>页

<mark><综合》</mark> 群组:	则 <mark>试></mark> 组1	类型: 锂电浴 配置	也	容量 电压	:0.001 AH :10.000 V	电压内阻
R	1.	5731	Ω	步数 功能 RH:	:01/01 :电池内阻 3000.0 Ω	直流 负载
U T	8.2	2151	V	RL: VH: UL:	1.0000mΩ 30.000 V 0.001 U	直流 电源
'		3.0	2	ν Ε.	0.001 0	群组 测试
USB磁盘就线	者。					
08:43 📇		自动	1 1	亭止	键盘锁	

4.1.1【类型】

■设置电池类型的步骤

第1步	按【Meas】	安【Meas】快捷键,侧边栏选择【群组测试】进入<综合测试>页			
第2步	使用光标键进	使用光标键选择【锂电池】字段			
第3步	使用功能键进	择			
	功能键	力能键 功能			
	锂电池 设置测试电池类型为锂电池				
	镍氢电池	镍氢电池 设置测试电池类型为镍氢电池			
	镍镉电池 设置测试电池类型为镍铬电池				
	铅酸电池	沿酸电池 设置测试电池类型为铅酸电池			

4.1.2【容量】

■设置电池标称容量的步骤

第1步	按【Meas】快捷键,侧边栏选择【群组测试】进入<综合测试>页
第2步	使用光标键选择【0.001AH】字段
第3步	使用数字键盘输入电池标称容量值

4.1.3【群组】

仪器支持 10 个测试组。

■设置测试组的步骤

第1步	按【Meas】	快捷键,侧边栏选择【群组测试】进入<综合测试>页		
第2步	使用光标键进	使用光标键选择【组1】字段		
第3步	使用功能键进	使用功能键选择		
	功能键	功能		
	组1	设置测试组为 01		
	组2	设置测试组为 02		
	组10	设置测试组为 10		

4.1.4【配置】

■设置群组配置的步骤

第1步	按【Meas】	决捷键,侧边栏选择【群组测试】进入<综合测试>页		
第2步	使用光标键进	使用光标键选择【配置】字段		
第3步	使用功能键进	使用功能键选择		
	功能键	功能		
	参数配置	进入群组参数的设置页面		
	测试结果	进入群组测试结果显示页面		
	步数设置	设置群组最大测试步骤		
	复位	恢复当前群组为出厂设置		

4.1.5【电压】

■设置电池标称电压的步骤

第1步	按【Meas】快捷键,侧边栏选择【群组测试】进入<综合测试>页
第2步	使用光标键选择【10.000V】字段
第3步	使用数字键盘输入电池标称电压值

4.1.6【步数】

■设置当前步骤的步骤

第1步	按【Meas】快捷键,	侧边栏选择【	【群组测试】	进入<综合测试>页
第2步	使用光标键选择【01	/09】 字段		

第3步	使用功能键选择		
	功能键	功能	
	上一步	选择当前步骤的上一步测试项目	
	下一步	选择当前步骤的下一步测试项目	

4.2 <组配置>页

论在什么页面,您只要按【Meas】快捷键,侧边栏选择【综合测试】,进入<综合测试>页,使用光标键选择【配 置】字段,按功能键【参数配置】进入<组配置>页。

在<组配置>页可以对 10 种测试功能组合设置,一共支持 20 步。

```
图 4-2 <组配置>页
```

< <u><组配置></u> 电池电压: 电压量程: 模式:	10.000 V [0]自动 连续	电池容量: 电阻量程: 负载量程I:	0.001 AH [0]自动 3A	
步数: 电阻上限: 电压上限: 测试时间:	步骤01 3000.0 Ω 30.000 V 3.0 S	测试功能: 电阻下限: 电压下限:	电池内阻 1.0000 mΩ 0.001 V	
08:43 📙 🖫		返回	键盘锁	

4.2.1 【电池电压】

■设置电池标称电压的步骤

第1步	按【Meas】快捷键,侧边栏选择【群组测试】进入<综合测试>页,使用光标选择【配置】 字段,按功能键【参数配置】进入【组配置】页
第2步	使用光标键选择【10.000V】字段
第3步	使用数字键盘输入电池标称电压值

4.2.2 【电池容量】

■设置电池标称容量的步骤

441 1上	按【Meas】快捷键,侧边栏选择【群组测试】进入<综合测试>页,使用光标选择【配置】
- 第「少	字段,按功能键【参数配置】进入【组配置】页
第2步	使用光标键选择【0.001AH】字段
第3步	使用数字键盘输入电池标称容量值

4.2.3【电压量程】

■设置电压量程的步骤

當1 牛	按【Meas】	快捷键,侧边栏选择【群组测试】进入<综合测试>页,使用光标选择【配置】
お リン	字段,按功能	键【参数配置】进入【组配置】页
第2步	使用光标键进	择【[0]自动】字段
第3步	使用功能键进	择
	功能键	功能
	自动量程	仪器将自动选择量程
	手动量程	仪器被锁定在当前量程上
	增加+	增加量程号,同时量程更改为锁定
	减小-	减小量程号,同时量程更改为锁定

4.2.4 【电阻量程】

■设置电阻量程的步骤

第1步	按【Meas】 字段,按功能	央捷键,侧边栏选择【群组测试】进入<综合测试>页,使用光标选择【配置】 3键【参数配置】进入【组配置】页		
第2步	使用光标键进	使用光标键选择【[0]自动】字段		
第3步	使用功能键进	使用功能键选择		
	功能键	功能		
	自动量程	仪器将自动选择量程		
	手动量程	仪器被锁定在当前量程上		
	增加+	增加量程号,同时量程更改为锁定		
	减小-	减小量程号,同时量程更改为锁定		

4.2.5【连续】

■设置群组测试模式的步骤

第1步	按【Meas】 字段,按功能	央捷键, 侧边栏选择【群组测试】进入<综合测试>页, 使用光标选择【配置】 3键【参数配置】进入【组配置】页	
第2步	使用光标键进	更用光标键选择【连续】字段	
第3步	使用功能键进	使用功能键选择	
	功能键	功能	
	连续	群组测试自动按设置顺序进行测试	
	单步	群组测试测试完当前步骤后暂停,需要触发信号才能进行下一步测试	

4.2.6【步数】

■设置当前步骤的步骤

쏰 1 止	按【Meas】	央捷键,侧边栏选择【群组测试】进入<综合测试>页,使用光标选择【配置】
第 リ 少	字段, 按功能	键【参数配置】进入【组配置】页
第2步	使用光标键说	·择【步骤 01】字段
第3步	使用功能键进	择
	功能键	功能

上一步	选择上一个测试步骤
下一步	选择下一个测试步骤

4.2.7 【测试功能】

■设置功能的步骤

第1步	按【Meas】快捷键,侧边栏选择【群组测试】进入<综合测试>页,使用光标选择【配置】 字段,按功能键【参数配置】进入【组配置】页		
第2步	使用光标键进	择【电池内阻】字段	
第3步	使用功能键进	择	
	功能键	功能	
	空	设置当前步骤的测试功能为空	
	电池激活	设置当前步骤的测试功能为电池激活	
	电池内阻	设置当前步骤的测试功能为电池内阻	
	充电测试	设置当前步骤的测试功能为充电测试	
	过充测试	设置当前步骤的测试功能为过充测试	
	直流内阻	设置当前步骤的测试功能为直流内阻	
	放电测试	设置当前步骤的测试功能为放电测试	
	过放测试	设置当前步骤的测试功能为过放测试	
	短路测试	设置当前步骤的测试功能为短路测试	
	恢复测试	设置当前步骤的测试功能为恢复测试	

*其他步的设置同上

4.2.8【电阻上限】

■设置电阻上限的步骤

441 1 上	按【Meas】快捷键,侧边栏选择【群组测试】进入<综合测试>页,使用光标选择【配置】
- 第「少	字段,按功能键【参数配置】进入【组配置】页
第2步	使用光标键选择【3000.0Ω】字段
第3步	使用数字键盘输入设定的电阻上限值
L	

*其他参数的设置请参考以上的操作

4.2.9【电阻下限】

■设置电阻下限的步骤

公1 上	按【Meas】快捷键,侧边栏选择【群组测试】进入<综合测试>页,使用光标选择【配置】
デーシ	字段, 按功能键【参数配置】进入【组配置】页
第2步	使用光标键选择【1.0000mΩ】字段
第3步	使用数字键盘输入设定的电阻下限值

*其他参数的设置请参考以上的操作

4.3 **<群组测试结果>页**

论在什么页面,您只要按【Meas】快捷键,侧边栏选择【综合测试】,进入<综合测试>页,使用光标键选择【配置】字段,按功能键【测试结果】进入<群组测试结果>页。

在<群组测试结果>页可以查看群组测试每一步的测试结果。

图 4-3 <群组测试结果>页

4.4 < 电压内阻测试 > 页

论在什么页面,您只要按【Meas】快捷键,侧边栏选择【电压内阻】,进入<电压内阻测试>页。 图 4-4 < 电压内 阻测 试>页

<mark>〈电压内阻》</mark> 电阻量程:	<mark>则试></mark> [3]自动	短路清零: 电压量程:	短路清零 [1]自动	直流 负载
电阻上限: 电压上限:	1.0000 Ω 10.000 V	电阻下限: 电压下限:	1.0000 mΩ 0.1000 V	直流
R:	1.5	728	Ω	电池
U:	8 2	151	v	^{合里}
	0.2			测试
08:43 县 🖫			建盘锁	

4.4.1 【短路清零】

■设置短路清零的步骤

4.4.2 【电阻量程】

■设置电阻量程的步骤

第1步	按【Meas】	快捷键,侧边栏选择【电压内阻】进入<电压内阻测试>页
第2步	使用光标键进	择【[3]自动】字段
第3步	使用功能键进	择
	功能键	功能
	自动量程	仪器将自动选择量程
	手动量程	仪器被锁定在当前量程上
	增加+	增加量程号,同时量程更改为锁定
	减小-	减小量程号,同时量程更改为锁定

4.4.3 【电压量程】

■设置电压量程的步骤

第1步	按【Meas】	快捷键,侧边栏选择【电压内阻】进入<电压内阻测试>页	
第2步	使用光标键说	择【[1]自动】字段	
第3步	使用功能键进	择	
	功能键	功能	
	自动量程	仪器将自动选择量程	
	手动量程	仪器被锁定在当前量程上	
	增加+	曾加+ 增加量程号,同时量程更改为锁定	
	减小-	减小量程号,同时量程更改为锁定	

4.4.4 【电阻上限】

■设置电阻上限的步骤

第1步	按【Meas】快捷键,侧边栏选择【电压内阻】进入<电压内阻测试>页
第2步	使用光标键选择【1.00000】字段
第3步	使用数字键盘输入设定的电阻上限值

4.4.5 【电阻下限】

■设置电阻下限的步骤

第1步	按【Meas】快捷键,侧边栏选择【电压内阻】进入<电压内阻测试>页
第2步	使用光标键选择【1.0000mΩ】字段
第3步	使用数字键盘输入设定的电阻下限值

4.4.6 【电压上限】

■设置电阻上限的步骤

第1步	按【Meas】快捷键,侧边栏选择【电压内阻】进入<电压内阻测试>页
第2步	使用光标键选择【10.000V】字段
第3步	使用数字键盘输入设定的电压上限值

4.4.7【电压下限】

■设置电压下限的步骤

第1步	按【Meas】快捷键,侧边栏选择【电压内阻】进入<电压内阻测试>页
第2步	使用光标键选择【0.1000V】字段
第3步	使用数字键盘输入设定的电压下限值

4.5 <**直流负载测试>页**

论在什么页面,您只要按【Meas】快捷键,侧边栏选择【直流负载】,进入<直流负载测试>页。 图 4-5 < 直流负载测试>页

<mark>【<直流负载测试></mark> 模式: 定电流 电压上限: 30.000 ∪ 电流上限: 2.0000 A 功率上限: 150.0 W	电压 内阻
u: <u>8 127 v</u>	直流 电源
I: $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 &$	电池容里
P: 0.8W R: 80 Ω I:0.1000 A	群组 测试
<u> 井媚教</u> 瑞米集 88:44 昌 囧 信动 停止 健盘锁	

4.5.1【模式】

■ 设置测试模式的步骤

第1步	按【Meas】	快捷键,侧边栏选择【直流负载】进入<直流负载测试>页
第2步	使用光标键选	5择【定电流】字段
第3步	使用功能键选	择
	功能键	功能
	定电压	设置定电压工作模式【定电压】 定电压模式下,电子负载始终消耗足够的电流以保证负载输入电压恒定。 如果您的被测电源为恒流源,那么使用定电压模式可以有效工作。

[Meas] 测量显示 25

		电压输入的最大位数为 5 位,但小数点位数会受最大保护电压值(V-MAX)
		大小而不同。
		当 V-MAX > 18V,小数点保留 3 位;
		当 V-MAX ≤ 18V,小数点保留 4 位;
		设置定电流工作模式【定电流】
		定电流模式下,不管输入电压是否改变,电子负载始终消耗恒定的电流。
		如果您的被测电源为恒压源,建议使用定电流模式。
		负载电流 ▲
	定电流	□□□□□
		电流输入的最大位数为5位,但小数点位数会受最大保护电流值(I-MAX)
		八小四小门。 当 LMAX > 3A 小粉占保密 3 位・
		当 I-MAX < 3A. 小数占保留 4 位:
		设置定功率工作模式【定功率】
		正切率模式对但压源可以进行有效模拟,对但流源的测试可能还不到预期
		的效果,对恒流源的测试使用定电压模式更有效。
		根据公式: P = V × I,如果输入电压 V 增大, 电流 I 将被迫减小以保持功率恒定。
	定功率	负载电流Ⅰ▲
		$\begin{array}{c c} 11 \\ \hline \\ V1 \\ V2 \\ V \end{array}$
		功率输入的最大位数为5位,小数点位数保留3位。
		设置定电阻工作模式【定电阻】
		定电阻模式下,电子负载等效为恒定的电阻。
		定电阻模式可以对恒压源进行有效模拟,对恒流源的测试可能达不到预期
	定电阻	
		16, 电子火转。且处于辰沕驹已起往,心还惊起,对但亦派刚则风取有效。
		定。

4.5.2 【电压上限设置】

■设置电压上限的步骤

第1步	按【Meas】快捷键,侧边栏选择【直流负载】进入<直流负载测试>页	
第2步	使用光标键选择【30.000V】字段	
第3步	使用数字键盘输入设定的电压上限值	

4.5.3 【电流上限设置】

■设置电流上限的步骤

第1步	按【Meas】快捷键,侧边栏选择【直流负载】进入<直流负载测试>页
第2步	使用光标键选择【15.000A】字段
第3步 使用数字键盘输入设定的电流上限值	

4.5.4 【功率上限设置】

■设置功率上限的步骤

第1步	按【Meas】快捷键,侧边栏选择【直流负载】进入<直流负载测试>页
第2步	使用光标键选择【100.0W】字段
第3步	使用数字键盘输入设定的功率上限值

4.5.5【参数设置】

■设置参数设置的步骤

第1步	按【Meas】快捷键,侧边栏选择【直流负载】进入<直流负载测试>页
第2步	使用光标键选择【0.1000A】字段
第3步	使用数字键盘输入设定的电流值

4.6 <**直流电源测试>页**

论在什么页面,您只要按【Meas】快捷键,侧边栏选择【直流电源】,进入<直流电源测试>页。 图 4-6 < 直流 电源测 试>页

<mark>≺直流电源测试></mark> 电压设置: 9.000	∪ 电流设置:	0.2000 A	电压 内阻
U: 🧕	569	V	直流 负载
	000	Δ	电池 容里
P: 1.72 W	R; 42.8 Ω	RUN	群组 测试
L 开始数据采集			
88:43 📇 🖫	自动停止	建盘锁	

4.6.1【电压设置】

■设置电压的步骤

	第1步	按【Meas】快捷键,侧边栏选择【直流电源】进入<直流电源测试>页
	第2步	使用光标键选择【9.000V】字段
第3步 使用数字键盘输入设定的电压值 电压范围: 0.001~30.000V		使用数字键盘输入设定的电压值
		电压范围: 0.001~30.000V

4.6.2 【电流设置】

■设置电流的步骤

第1步	按【Meas】快捷键,侧边栏选择【直流电源】进入<直流电源测试>页	
第2步	使用光标键选择【0.2000A】字段	
笜 2 中	使用数字键盘输入设定的电流上限值	
おっか	电流范围: 0.0001~15.000A	

4.7 < 电池容量测试 > 页

论在什么页面,您只要按【Meas】快捷键,侧边栏选择【电池容量】,进入<电池容量测试>页。 图 4-7 < 电池容量测试>页

4.7.1【文件】

■ 设置文件的步骤

第1步	按【Meas】	按【Meas】快捷键,侧边栏选择【电池容量】进入<电池容量测试>页	
第2步	使用光标键进	择【文件2】字段	
第3步	使用功能键进	择	
	功能键	功能	
	文件 1	选择参数设置文件 1	
	文件 2	选择参数设置文件 1	
	文件 10	选择参数设置文件 10	

4.7.2 【设置】

■ 设置文件配置的步骤

第1步	按【Meas】	快捷键,侧边栏选择【电池容量】进入<电池容量测试>页
第2步	使用光标键说	择【配置】字段
第3步	使用功能键进	择
	功能键	功能
	配置	进入文件参数设置页面
	复位	恢复当前文件为出厂设置

4.8 <文件配置>页

论在什么页面, 您只要按【Meas】快捷键, 侧边栏选择【电池】, 进入<综合测试>页, 使用光标键选择【配置】字段, 按功能键【参数配置】进入<组配置>页。

图 4-5 <泄漏测试>页

4.8.1 【电压设置】

电压设置。

■设置电压的步骤

第1步	按【Setup】快捷键, 就可以进入<功能设置>页, 测试模式选择【泄漏测试】, 按【Meas】
	快捷键进入<泄漏测试>页
第2步	使用光标键选择【电压设置】字段
体っ止	使用数字键盘输入设定的电压值,然后按【Ente】设置结束
おっひ	电压范围: 0.0~300.0V

4.8.2【工作模式】

工作模式设置。

■ 设置工作模式的步骤

쏰 1 上	按【Setup】	快捷键,就可以进入<功能设置>页,测试模式选择【泄漏测试】,按【Meas】		
お レ	快捷键进入<	快捷键进入<泄漏测试>页		
第2步	使用光标键说	封择【线阻归零】字段		
第3步	使用功能键进	择		
	功能键	功能		
	→ ★	动态泄漏测量时安检仪插座的 L、N 端向被测负载输出工作电压, 测量负载		
	动念	在工作状态下的泄漏电流		
	静态	动态泄漏测量时安检仪插座的 L、N 端先后向被测负载的电源输入端连接,		
		测量负载在非工作状态下的泄漏电流		

4.8.3【电流下限】

电流下限设置。

■设置电流下限的步骤

第1步	按【Setup】快捷键, 就可以进入<功能设置>页, 测试模式选择【泄漏测试】, 按【Meas】
	快捷键进入<泄漏测试>页
第2步	使用光标键选择【电流下限】字段
盛っ止	使用数字键盘输入设定的下限值,然后按【Ente】设置结束
おっか	电流下限:0.000~20.00mA

4.8.4 【电流上限】

电流上限设置。

■设置电流上限的步骤

쏰1 上	按【Setup】快捷键, 就可以进入<功能设置>页, 测试模式选择【泄漏测试】, 按【Meas】
第 「少	快捷键进入<泄漏测试>页
第2步	使用光标键选择【电流上限】字段

盛っ止	使用数字键盘输入设定的上限值,然后按【Ente】设置结束
おっか	电流上限: 0.000~20.00mA

4.8.5【定时设置】

定时设置。

■设置定时的步骤

ᄷᆧィᅶ	按【Setup】快捷键, 就可以进入<功能设置>页, 测试模式选择【泄漏测试】, 按【Meas】
	快捷键进入<泄漏测试>页
第2步	使用光标键选择【定时设置】字段
第3步	使用数字键盘输入设定的时间值,然后按【Ente】设置结束

4.8.6【频率设置】

频率设置。

■ 设置频率的步骤

쏰 1 牛	按【Setup】	快捷键,就可以进入<功能设置>页,测试模式选择【泄漏测试】,按【Meas】		
第 ビン	快捷键进入<	快捷键进入<泄漏测试>页		
第2步	使用光标键说	择【频率设置】字段		
第3步	使用功能键进	择		
	功能键	功能		
	50Hz	设置采样频率 50Hz。		
	60Hz	设置采样频率 60Hz		

4.8.7 【漏电流归零】

漏电流归零设置。

■ 设置漏电流归零的步骤

쏰 1 牛	按【Setup】	快捷键,就可以进入<功能设置>页,测试模式选择【泄漏测试】,按【Meas】		
お レ	快捷键进入<	快捷键进入<泄漏测试>页		
第2步	使用光标键说	择【电流归零】字段		
第3步	使用功能键进	择		
	功能键	功能		
	归零	将测试线与被测物连接,系统侦测到漏电流值后会记录与系统中		
	复位	清空电流归零值		

5. [Setup]设置显示

本章您将了解到所有的设置功能:

- <设置显示>页
- <U 盘设置>页

5.1 <功能设置>页

在任何时候,您只要按【Setup】快捷键,就可以进入<**功能设置**>页。

图 5-1 <功能设置>页

<mark>≺功能设置></mark> 电阻量程:	[0]自动	电压量程:	[1]自动	电压 内阻
电阻上限: 电压上限: 负载模式:	1.0000Ω 10.000V 定电流	电阻下限: 电压下限: 负载电压:	0.1000 V 30.000 V	直流 负载
负载电流: 电源电压:	2.0000 A 9.000 V	负载功率: 电源电流:	150.0 W 0.2000 A	直流 电源
触发: 不合格停止:	内部 关闭	讯响: 速率:	关闭 慢速	电池 容里
09:05 💄 🖫	测量	建 U盘设置	键盘锁	群组 测试

5.1.1【电阻量程】

■设置电阻量程的步骤

第1步	按【Setup】	快捷键, <功能设置>页
第2步	使用光标键进	择【[0]自动】字段
第3步	使用功能键进	择
	功能键	功能
	自动量程	仪器将自动选择量程
	手动量程	仪器被锁定在当前量程上
	增加+	增加量程号,同时量程更改为锁定
	减小-	减小量程号,同时量程更改为锁定

5.1.2 【电压量程】

■设置电压量程的步骤

第1步	按【Setup】	快捷键, <功能设置>页
第2步	使用光标键进	择【[1]自动】字段
第3步	使用功能键进	择
	功能键	功能
	自动量程	仪器将自动选择量程
	手动量程	仪器被锁定在当前量程上
	增加+	增加量程号,同时量程更改为锁定
	减小-	减小量程号,同时量程更改为锁定

5.1.3 【电阻上限】

■设置电阻上限的步骤

第1步	按【Setup】快捷键, <功能设置>页
第2步	使用光标键选择【1.0000Ω】字段
第3步	使用数字键盘输入设定的电阻上限值

5.1.4 【电阻下限】

■设置电阻下限的步骤

第1步	按【Setup】快捷键, <功能设置>页
第2步	使用光标键选择【1.0000mΩ】字段
第3步	使用数字键盘输入设定的电阻下限值

5.1.5 【电压上限】

■设置电阻上限的步骤

第1封	븆 按【Setup】快捷键, <功能设置>页	
第2岁	使用光标键选择【10.000V】字段	
第35	使用数字键盘输入设定的电压上限值	

5.1.6 【电压下限】

■设置电压下限的步骤

第1步	按【Setup】快捷键, <功能设置>页		
第2步	使用光标键选择【0.1000V】字段		
第3步	使用数字键盘输入设定的电压下限值		

5.1.7【负载模式】

■ 设置测试模式的步骤

第1步	按【Setup】	按【Setup】快捷键, <功能设置>页		
第2步	使用光标键选择【定电流】字段			
第3步	使用功能键选择			
	功能键	功能		
	定电压	设置定电压工作模式【定电压】		

	定电流	设置定电流工作模式【定电流】
	定功率	设置定功率工作模式【定功率】
	定电阻	设置定电阻工作模式【定电阻】

5.1.8【负载电压】

■设置电压上限的步骤

第1步	按【Setup】快捷键, <功能设置>页
第2步	使用光标键选择【30.000V】字段
第3步	使用数字键盘输入设定的电压上限值

5.1.9【负载电流】

■设置电流上限的步骤

第1步	按【Setup】快捷键, <功能设置>页	
第2步	使用光标键选择【15.000A】字段	
第3步	使用数字键盘输入设定的电流上限值	

5.1.10 【负载功率】

■设置功率上限的步骤

第1步	按【Setup】快捷键, <功能设置>页
第2步	使用光标键选择【100.0W】字段
第3步	使用数字键盘输入设定的功率上限值

5.1.11 【电源电压】

■设置电压的步骤

第1步	按【Setup】快捷键, <功能设置>页		
第2步	使用光标键选择【9.000V】字段		
盆2牛	使用数字键盘输入设定的电压值		
売っ少	电压范围: 0.001~30.000V		

5.1.12 【电源电流】

■设置电流的步骤

第1步	按【Setup】快捷键, <功能设置>页		
第2步	使用光标键选择【0.2000A】字段		
留っ止	使用数字键盘输入设定的电流上限值		
お う 少	电流范围: 0.0001~15.000A		

5.1.13 【触发】

■设置触发的步骤

第1步	按【Setup】快捷键进入<功能设置>主页面
第2步	使用光标键选择【内部】字段;

第3步	使用功能键选择		
	功能键	功能	
	内部	使用内部触发	
	外部	使用外部触发	
	远程	使用远程触发	

5.1.14 【讯响】

■设置讯响的步骤

第1步	按【Setup】快捷键进入<功能设置>主页面			
第2步	使用光标键进	使用光标键选择【关闭】字段;		
第3步	使用功能键选择			
	功能键	功能		
	关闭	关闭蜂鸣器		
	打开	打开蜂鸣器		

5.1.15 【不合格停止】

■设置不合格停止开关的步骤

第1步	按【Setup】快捷键进入<功能设置>主页面			
第2步	使用光标键进	使用光标键选择【关闭】字段;		
第3步	使用功能键进	使用功能键选择		
	功能键	功能		
	关闭	综合测试过程中,在被测物测试失败的步骤中继续测试		
	打开	综合测试过程中,在被测物测试失败的步骤中停止测试		

5.1.16 【速率】

■设置采样速率的步骤

第1步	按【Setup】快捷键进入<功能设置>主页面		
第2步	使用光标键选择【慢速】字段;		
第3步	使用功能键选择		
	功能键	功能	
	慢速	设置电压内阻测试功能的采样速率为慢速	
	快速	设置电压内阻测试功能的采样速率为快速	

5.2 **<U 盘设置>页**

本章您将了解到仪器的系统配置:

- 系统配置页
- 系统信息页
- 系统服务页

6.1 <系统配置>页

在任何时候,您只要按【系统】快捷键,进入<**系统配置**>页。

图 6-1 <系统配置>页

▲<系统配置> 语言: 日期/叶间·	中文(CHS) 2017—01—01	00. 00. 07		系统 信息
ロ 期 /10101 帐号: 远程控制:	管理员 RS232	密码 站号: 运用thay	03 SCDT	系统 服务
波特率: 指令握手:	TT5200 开	週刊//)√以∶ 结果发送:	SEP1 FETCH?	
08:03 📙 🖫	测	里 设置	键盘锁	

6.1.1【语言】

■设置语言步骤:

第1步	按【系统】 忖	建键,进入<系统配置>页面		
第2步	使用光标键说	使用光标键选择【语言】字段		
第3步	使用侧边栏功能键设置语言			
	功能键	功能		
	中文 (CHS)	设置仪器为中文操作界面		
	ENGLISH	设置仪器为英文操作界面		

6.1.2【日期】、【时间】

■设置日期步骤:

第1步	按【系统】快捷键,进入<系统配置>页面
第2步	使用光标键选择【日期】字段
第3步	使用侧边栏功能键设置日期

功能键	功能
年+	+1 年
年-	-1 年
月+	+1 月
月-	-1月
日+	+1日
日-	-1日

■设置时间步骤:

第1步	按【系统】快捷键,进入<系统配置>页面		
第2步	使用光标键进	使用光标键选择【时间】字段	
第3步	使用侧边栏功能键设置时间		
	功能键	功能	
	时+	+1 小时	
	时-	-1 小时	
	分+	+1 分钟	
	分-	-1 分钟	
	秒+	+1 秒	
	秒-	-1 秒	

注: 如果内部电池电量不足, 时钟就会停止运行, 这时需要更换新的电池。

6.1.3 【账号】、【密码】

仪器有两种模式供选择:

- 管理员 除了【系统服务】页外,其它功能都对管理员开放。
- 用户 除了【系统服务】页外,其它功能用户可以操作。

■设置账号步骤:

第1步	按【系统】 忖	·捷键,进入<系统配置>页面		
第2步	使用光标键说	使用光标键选择【账号】字段		
第3步	使用侧边栏功能键更改账号			
	功能键	功能		
	管理员	除了<系统服务>页面外,其它功能都对管理员开放。		
	用户	除了【系统服务】页外,其它功能用户可以操作,设置的资料不保存。		

■设置管理员密码步骤:

第1步	按【系统】快捷键,进入<系统配置>页面			
第2步	使用光标键选	使用光标键选择【密码】字段		
第3步	使用侧边栏功能键设置密码			
	功能键	功能		
	更改密码	输入最多 9 位的数字密码,密码只包括数字和符号。如果忘记密码, 请致电我公司销售部。		
	删除密码	管理员将不受密码保护		

6.1.4 【远程设置】

■设置远程通讯的步骤:
第1步	按【系统】快捷键,进入<系统配置>页面	
第2步	使用光标键选择【远程设置】字段	
第3步	使用侧边栏功能键选择	
	功能键 功能	
	RS232	RS232 接口

6.1.5【站号】

■设置站号的步骤:

第1步	按【系统】快捷键,进入<系统配置>页面		
第2步	使用光标键选择【站号】字段		
第3步	使用侧边栏功	使用侧边栏功能键选择	
	功能键	功能	
	01		
	02		
	20		

为了方便多台相同仪器同时操作, 仪器允许使用站号 00 来进行广播通讯, 使用站号 00 进行通讯, 仪器只接收指令, 而无法返回响应码。

6.1.6【波特率】

■设置波特率的步骤:

第1步	按【系统】快捷键,进入<系统配置>页面			
第2步	使用光标键进	使用光标键选择【波特率】字段		
第3步	使用侧边栏功	使用侧边栏功能键更改波特率		
	功能键	力能键 功能		
	9600	9600 如果您使用带光耦隔离的通讯转换器,请使用此波特率。		
	19200	19200		
	38400	38400		
	57600			
	115200 与计算机主机通讯,建议您使用此高速波特率。			

6.1.7【通讯协议】

■设置通讯协议的步骤:

第1步	按【系统】快捷键,进入<系统配置>页面		
第2步	使用光标键选择【通讯协议】字段		
第3步	使用侧边栏功能键设置语言		
	功能键	功能	
	SCPI		
	MODBUS		

6.1.8【指令握手】

■设置指令握手的步骤:

第1步	按【系统】快捷键,进入<系统配置>页面		
第2步	使用光标键选择【指令握手】字段		
第3步	使用侧边栏功	使用侧边栏功能键设置语言	
	功能键	功能	
	打开	指令握手打开后,主机发送给仪器的所有指令都将原样返回给主机, 之后才返回数据	
	关闭	指令握手关闭后,主机发送给仪器的指令将被立即处理	

6.1.9【结果发送】

■设置结果发送的步骤:

第1步	按【系统】快捷键,进入<系统配置>页面		
第2步	使用光标键选择【结果发送】字段		
第3步	使用侧边栏功能键设置语言		
	功能键	功能键 功能 功能	
	FETCH	FETCH 使用指令FETCH? 获取所有测量数据	
	AUTO	AUTO 每次测试完成后自动发送给主机	

6.2 **< 系统信息 > 页**

在任何时候,您只要按【系统】快捷键,进入<**系统配置**>页,然后按侧边栏功能键【系统信息】进入<系统信息>页。 图 6-2 系统信息页

<系统信息>	175000	系统
型号:	AT5800	配置
序列号:	2103001	
仪器版本:	REV A1.00	系统
OS版本:	REV V8	服分
逻辑处理器:	REV CØ	
信号处理器:	REV A3	
USB接口:	REV B2	
HANDLER接口:	已安装	
		·
09:27 📙 🖫	测量 设置 键盘锁	

7.远程控制

本章提供以下内容

- 关于 RS-232C
- ▶ 关于 USB 转接盒
- 选择波特率.
- 关于 SCPI

7.1 关于 RS-232C

您可以连接到一个控制器(如 PC 和 PLC)的 RS-232 接口使用 Applent RS-232 DB-9 串口通讯线,串口使用发送(TXD),接收(RXD)和信号地(GND)线的 RS-232 标准。未使用硬件握手 CTS 和 RTS 线。

注意: 仅能使用 Applent 的(非调制解调器) DB -9 电缆。 电缆长度不应超过 2 米。

图 7-1 仪器上的 RS-232 连接端口

表 7-1 RS-232 连接器引脚

NAME	DB-25	DB-9	NOTE
DCD	8	1	NC
RXD	3	2	数据发送端
TXD	2	3	数据接收端
DTR	20	4	NC
GND	7	5	地线
DSR	6	6	NC
RTS	4	7	NC
CTS	5	8	NC

■ 确保控制器连接到 AT5800 并使用这些设置。

RS-232 接口传输数据使用:

- 8 数据位,
- 1 停止位,

没有奇偶校验位.

7.2 关于 USB 转接器(可选)

注意:

USB 转接器可让 AT5800 连接到您 PC 上的 USB 端口。

请安装 USB-串口驱动程序,然后使用 USB 串行接口。 Applent 的 USB 转接器是 ATN2 。

图 7-2 USB 转接器 ATN2

7.3 选择波特率

在你能够通过内置的 RS-232 控制器发送 RS-232 命令控制仪器 AT5800 前,你必须配置 RS-232 的波特率。 AT5800 的 RS-232 接口使用 SCPI 语言 RS-232 的配置如下: 数据位: 8-bit 停止位: 1-bit 校验位: 无 **设置波特率** Step 1. 请按[Setup] 键

- Step 2. 使用光标键选择【BAUD】
- Step 3. 使用功能键选择波特率

功能键	功能
9600	
19200	
38400	
57600	
115200	推荐

7.4 SCPI 语言

完全支持可编程仪器的标准命令(SCPI)

注意: AT5800 仅支持 SCPI 语言.

8.SCPI 命令参考

本章包含编程 AT5800 的 SCPI 命令的参考信息。

- 命令解析器——了解命令解析器的一些规则。
- 命令和参数——命令行的书写规则
- 命令参考

本章节提供了仪器使用的所有的 SCPI 命令,通过这些 SCPI 命令,可以完全控制仪器所有功能。

8.1 命令串解析

主机可以发送一串命令给仪器, 仪器命令解析器在捕捉到结束符 (\n) 或输入缓冲区溢出后开始解析。

例如: 合法的命令串:

AAA:BBB CCC;DDD EEE;:FFF

仪器命令解析器负责所有命令解析和执行,在编写程序前您必须首先对其解析规则有所了解。

8.1.1 命令解析规则

- 1. 命令解析器只对 ASCII 码数据进行解析和响应。
- SCPI 命令串必须以 NL('\n' ASCII 0x0A)为结束符, 命令解析器在收到结束符后或缓冲区溢出才开始执行命令 串。
- 如果指令握手打开,命令解析器在每接受到一个字符后,立即将该字符回送给主机,主机只有接收到这个回送 字符后才能继续发送下一个字符。
- 4. 命令解析器在解析到错误后, 立即终止解析, 当前指令作废。
- 5. 命令解析器在解析到查询命令后,终止本次命令串解析,其后字符串被忽略。
- 6. 命令解析器对命令串的解析不区分大小写。
- 7. 命令解析器支持命令缩写形式,缩写规格参见之后章节。

8.1.2 符号约定和定义

本章使用了一些符号,这些符号并不是命令树的一部分,只是为了能更好的对命令串的理解。

- <> 尖括号中的文字表示该命令的参数
- [] 方括号中的文字表示可选命令
- {} 当大括号包含几个参数项目时,表示只能从中选择一个项目。
- () 参数的缩写形式放在小括号中。

大写字母 命令的缩写形式。

8.1.3 命令树结构

对 SCPI 命令采用树状结构的,可向下三级(注:此仪器的命令解析器可向下解析任意层),在这里最高级称为子系统命令。只有选择了子系统命令,该其下级命令才有效,SCPI使用冒号(:)来分隔高级命令和低级命令。

图 8-1 命令树结构

举例说明 ROOT:CCC:DDD PPP ROOT 子系统命令 CCC 第二级 DDD 第三级 PPP 参数

命令和参数

一条命令树由 命令和[参数] 组成,中间用1个空格 (ASCII: 20H) 分隔。

举例说明	<u>AAA:BBB</u> 1.234	
	命令 [参数]	

8.1.4 命令

命令字可以是长命令格式或缩写形式,使用长格式便于工程师更好理解命令串的含义;缩写形式适合书写。

8.1.5 参数

■ 单命令字命令, 无参数。

例如: AAA:BBB

■ 参数可以是字符串形式,其缩写规则仍遵循上节的"命令缩写规则"。 例如: AAA:BBB CCC

参数可以是数值形式

- · <integer> 整数 123, +123, -123
- ・ <float> 浮点数
 - 1. <fixfloat>: 定点浮点数: 1.23, -1.23
 - 2. <Sciloat>: 科学计数法浮点数: 1.23E+4, +1.23e-4
 - 3. <mpfloat>: 倍率表示的浮点数: 1.23k, 1.23M, 1.23G, 1.23u

表 8-1

倍率缩写

数值	倍率
1E18 (EXA)	EX
1E15 (PETA)	PE
1E12 (TERA)	Т
1E9 (GIGA)	G
1E6 (MEGA)	МА
1E3 (KILO)	К
1E-3 (MILLI)	М
1E-6 (MICRO)	U
1E-9 (NANO)	N
1E-12 (PICO)	Р
1E-15 (PEMTO)	F
1F-18 (ATTO)	А

提示: 倍率不区分大小写, 其写法与标准名称不同。

8.1.6 分隔符

仪器命令解析器只接受允许的分隔符,除此之外的分隔符命令解析器将产生 "Invalid separator(非法分割符)"错误。 这些分隔符包括:

; 分号,用于分隔两条命令。

例如: AAA:BBB 100.0; CCC:DDD

冒号,用于分隔命令树,或命令树重启动。

例如:AAA:BBB:CCC 123.4;:DDD:EEE 567.8

- ? 问号,用于查询。
 - 例如:AAA?

空格,用于分隔参数。

例如: AAA:BBB□1.234

主机可以发送一串命令给仪器, 仪器命令解析器在捕捉到结束符(\n) 或输入缓冲区溢出后开始解 析。

1/1 •

<mark>例如:</mark>合法的命令串:

AAA:BBB CCC;DDD EEE;:FFF

:

仪器命令解析器负责所有命令解析和执行,在编写程序前您必须首先对其解析规则有所了解。

8.2 命令参考

所有命令都是按子系统命令顺序进行解释,下面列出了所有子系统

- BASIC 基础设置子系统
- VR 电压内阻测试子系统
- LOAD 直流负载测试子系统
- POWER 直流电源测试子系统
- CAP 电池容量测试子系统
- GROUP 群组测试子系统
- ERROR 错误子系统
- IDN? 查询子系统

8.2.1 BASIC 子系统

BASIC 子系统用来设置仪器基础设置

表 8-2 BASIC 命令树

BASIC	: FUNC	{group,load,power,cap,vr}
命令树	:RATE	{slow,fast}
	:UFS	{on,off}
	:BEEP	{off,ng,gd}
	:BEEP	{off,ng,gd}

8.2.1.1 BASIC:FUNC

BASIC:FUNC 用来设置测试模式

命令语法	BASIC:FUNC <group,load,power,cap,vr></group,load,power,cap,vr>
参数	group:综合测试
	load: 直流负载测试
	power:直流功率测试
	cap: 电池容量测试
	vr: 电压内阻测试
例如	发送> BASIC:FUNC group <nl> //设置测试模式为综合测试</nl>
查询语法	BASIC: FUNC?
查询响应	< group,load,power,cap,vr > <nl></nl>
例如	发送> BASIC: FUNC?< <u><nl></nl></u>
	接收> group <nl></nl>

8.2.1.2 BASIC:RAET

BASIC:RATE 用来设置电压内阻测试模式的采样速率

命令语法	BAISC:RATE <slow,fast></slow,fast>		
参数	Slow: 慢速采集速度		
	Fast:快速采集速度		
例如	发送> BASIC: RATE slow <nl> //设置仪器慢速采集</nl>		
查询语法	BASIC:RATE?		
查询响应	<slow,fast><<u>NL></u></slow,fast>		
例如	发送> BASIC:RATE?		
	接收> slow< <u>NL></u>		

8.2.1.3 BASIC:BEEP

BASIC:BEEP 用来设置讯响

命令语法	BASIC:BEEP <off,ng,gd></off,ng,gd>
参数	off: 关闭讯响打开
	NG: 不合格讯响
	GD: 合格讯响
例如	发送> BASIC: BEEP off <nl> //设置讯响关闭</nl>
查询语法	BAISC: BEEP?
查询响应	<off,ng,gd><<u>NL></u></off,ng,gd>
例如	发送> BASIC:BEEP?
	接收> off <nl></nl>

8.2.1.4 BASIC:UFS

BASIC: UFS 用来设置综合测试不合格停止

命令语法	BASIC:UFS <on,off></on,off>
参数	On: 打开不合格停止测试功能
	Off: 关闭不合格停止测试功能
例如	发送> BASIC:UFS off <nl> //设置不合格停止关闭</nl>
查询语法	BAISC:UFS?
查询响应	<on,off><nl></nl></on,off>
例如	发送> BASIC:UFS?

接收> off<NL>

8.2.2 GROUP 子系统

GROUP 子系统用来设置仪器综合测试设置

表 8-3 GROUP 命令树

Group 命令树

:STATE{on,off}:FETCH <int>,<string>,<int>,<float>,<float>,<float>,<float>,<float>,<float>,<float>,<float>,<float>,<float>,<float>,<float>,<float>,:FILE{file1,file2,file3,,group10}:TYPE{li,NiMH,NiCD,SLA}:VOL<float>:CAP<float>:MODE{cont,step}:VNO<range>:VNO<range>:RNODE{auto,hold}:TOTAL<int>:SET0<step>:SET1<step>,<cur>,<tine>,<vh>,<vl>,<vl>,<ti>,<vl>,<vl>,<vl>:SET3<step>,<cur>,<ti>,<step,<in>,<in>,<vl>,<vl>,<vl>,<rl>,<step,<<in>,<in>,<vl>,<vl>,<vl>,<rl>,<step,<<istartcur>,<stopcur>,< ,<vl>,<step>,<startcur>,<stopcur>,<stepcur>, ,<step>,<startcur>,<stopcur>,<stepcur>,<step< td="">:SET6<step>,<cur>,<ti>,<step>,<vl>,<vl>,<vl>,<vl>,<rl>,<step>,<startcur>,<stopcur>,<stepcur>, ,<steptime>,<ih>,<ih>,<il>:SET7<step>,<cur>,<ti>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepp< td=""><step>,<vl>,<vl>,<vl>,<tl>,<tl><tl><tl><tl>::SET8<step>,<vl>,<vl>,<tl>,<tl>,<tl><tl><tl><te>;<tep>,<startcur>,<ti>,<tl>,<tl><tl><tep>,<<float></float></tep></tl></tl></tl></ti></startcur></tep></te></tl></tl></tl></tl></tl></vl></vl></step></tl></tl></tl></tl></tl></vl></vl></vl></step></stepp<></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></ti></cur></step></il></ih></ih></steptime></stepcur></stopcur></startcur></step></rl></vl></vl></vl></vl></step></ti></cur></step></step<></stepcur></stopcur></startcur></step></stepcur></stopcur></startcur></step></vl></stopcur></step,<<istartcur></rl></vl></vl></vl></in></step,<<in></rl></vl></vl></vl></in></step,<in></ti></cur></step></vl></vl></vl></ti></vl></vl></vh></tine></cur></step></step></int></range></range></float></float></float></float></float></float></float></float></float></float></float></float></float></float></float></int></string></int>		
:FETCH <int>,<string>,<int>,<float>,<float>,<float>,<float>,<float>,<float>,<float>,<float>,<float>,<float>,<float>,<float>,,group10} :TYPE {li,NiMH,NiCD,SLA} :VOL <float> :CAP <float> :MODE {cont,step} :VNO <range> :VMODE {auto,hold} :RNO <range> :RNO <range> :STEP <int> :SET0 <step> :SET1 <step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl> :SET3 <step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl> :SET4 <step>,<cur>,<time>,<vh>,<vl>,<vl>,<vl> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<vl>,<vl> :SET7 <step>,<cur>,<time>,<vh>,<vl>,<vl>,<vl> :SET7 <step>,<cur>,<time>,<vh>,<vl>,<vl>,<vl> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<vl>,<vl> :SET9 <step>,<tir>,<vl>,<vl>,<vl>,<vl>,<vl>,<vl>,<vl>,<vl< td=""><td>: STATE</td><td>{on,off}</td></vl<></vl></vl></vl></vl></vl></vl></vl></tir></step></vl></vl></vl></vh></time></cur></step></vl></vl></vl></vh></time></cur></step></vl></vl></vl></vh></time></cur></step></vl></vl></vl></vh></time></cur></step></vl></vl></vl></vh></time></cur></step></vl></vl></vh></time></cur></vol></step></vl></vl></vh></time></cur></vol></step></step></int></range></range></range></float></float></float></float></float></float></float></float></float></float></float></float></float></float></int></string></int>	: STATE	{on,off}
<pre></pre> <pre><float>,<float> </float></float></pre> <pre>:FILE {file1,file2,file3,,group10} </pre> <pre>:TYPE {li,NiMH,NiCD,SLA} </pre> <pre>:VOL </pre> <pre><float> </float></pre> <pre>:CAP </pre> <pre><float> </float></pre> <pre>:CAP </pre> <pre>(float> </pre> <pre>:CAP </pre> <pre>(float> </pre> <pre>:MODE {cont,step} </pre> <pre>:VMOO </pre> <pre></pre> <pre>(auto,hold) </pre> <pre>:RMODE {auto,hold} </pre> <pre>:TOTAL </pre> <pre>(int> </pre> <pre>:SET0 </pre> <pre><step>,<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></vol></step></pre> <pre>:SET4 </pre> <pre><step>,<cur>,<time>,<vh>,<vl>,<vl></vl></vl></vh></time></cur></step></pre> <pre>:SET5 </pre> <pre><step>,<cur>,<time>,<vh>,<vl>,<vl></vl></vl></vh></time></cur></step></pre> <pre>:SET6 </pre> <pre><step>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></step></pre> <pre>:SET7 </pre> <pre><step>,<cur>,<time>,<vh>,<vl>,<vl></vl></vl></vh></time></cur></step></pre> <pre>:SET8 </pre> <pre><step>,<tin>,<il>,<il>,<il>,<il>,<il>,<il>,<il>,<il< td=""><td>: FETCH</td><td><int>,<string>,<int>,<float>,<float>,</float></float></int></string></int></td></il<></il></il></il></il></il></il></il></tin></step></pre>	: FETCH	<int>,<string>,<int>,<float>,<float>,</float></float></int></string></int>
<pre>:FILE {file1,file2,file3,,group10} :TYPE {li,NiMH,NiCD,SLA} :VOL <float> :CAP <float> :MODE {cont,step} :VNO :VMODE {auto,hold} :RNO <frange> :RMODE {auto,hold} :TOTAL <int> :STEP <int> :SET0 <fstep> :SET1 <fstep>,<vol>,<cur>,<time>,<vh>,<vl> :SET2 <fstep>,<vol>,<cur>,<time>,<vh>,<vl> :SET4 <fstep>,<vol>,<cur>,<time>,<vh>,<vl> :SET5 <fstep>,<cur>,<time>,<vh>,<vl> :SET6 :SET6 <fstep>,<cur>,<time>,<vh>,<vl> :SET6 <fstep>,<cur>,<time>,<vh>,<vl> :SET7 <fstep>,<cur>,<time>,<vh>,<vl> :SET6 <fstep>,<cur>,<time>,<vh>,<vl> :SET7 <fstep>,<cur>,<time>,<vh>,<vl> :SET6 <fstep>,<cur>,<time>,<vh>,<vl> :SET7 <fstep>,<cur>,<time>,<vh>,<vl> :SET7 <fstep>,<cur>,<time>,<vh>,<vl> :SET7 <fstep>,<cur>,<time>,<vh>,<vl> :SET7 <fstep>,<cur>,<time>,<vh>,<vl>,<vl> :SET7 <fstep>,<cur>,<time>,<vh>,<vl>,<vl>,<steptime>,<ih>,<ll>,<tl> :SET7 </tl></ll></ih></steptime></vl></vl></vh></time></cur></fstep></vl></vl></vh></time></cur></fstep></vl></vh></time></cur></fstep></vl></vh></time></cur></fstep></vl></vh></time></cur></fstep></vl></vh></time></cur></fstep></vl></vh></time></cur></fstep></vl></vh></time></cur></fstep></vl></vh></time></cur></fstep></vl></vh></time></cur></fstep></vl></vh></time></cur></fstep></vl></vh></time></cur></fstep></vl></vh></time></cur></vol></fstep></vl></vh></time></cur></vol></fstep></vl></vh></time></cur></vol></fstep></fstep></int></int></frange></float></float></pre>		<float>,<float></float></float>
:TYPE {li,NiMH,NiCD,SLA} :VOL <float> :CAP <float> :MODE {cont,step} :VNO <range> :VMODE {auto,hold} :RNO <range> :RMODE {auto,hold} :RNO <range> :RMODE {auto,hold} :STEP {int> :SET0 <step> :SET1 <step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl> :SET3 <step>,<vol>,<cur>,<time>,<ti>,<tip>,<vl>,<vl> :SET4 <step>,<cur>,<time>,,<vl>,<vl>,<vl>,<rl> :SET5 <step>,<cur>,<time>,<vh>,<vl>,<vl>,<rl> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<vl>,<rl> :SET7 <step>,<tip>,<startcur>,<stopcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<stepcur>,<ste< td=""><td>:FILE</td><td><pre>{file1,file2,file3,,group10}</pre></td></ste<></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></stopcur></startcur></tip></step></rl></vl></vl></vh></time></cur></step></rl></vl></vl></vh></time></cur></step></rl></vl></vl></vl></time></cur></step></vl></vl></tip></ti></time></cur></vol></step></vl></vl></vh></time></cur></vol></step></step></range></range></range></float></float>	:FILE	<pre>{file1,file2,file3,,group10}</pre>
<pre>:VOL <float> :CAP <float> :CAP <float> :MODE {cont,step} :VNO <range> :VMODE {auto,hold} :RNO <range> :RMODE {auto,hold} :RNO <range> :RMODE {auto,hold} :TOTAL <int> :STEP <int> :SET0 <step> :SET1 <step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl></vl></vl></vh></time> :SET3 <step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl></vl></vl></vh></time> :SET4 <step>,<cur>,<time>,<vh>,<vl>,<rl></rl></vl></vh></time>,<vh>,<vl> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<rl></rl></vl></vh></time> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<vl></vl></vl></vh></time> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<vl></vl></vl></vh></time> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<vl></vl></vl></vh></time> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<vl></vl></vl></vh></time> :SET7 <step>,<cur>,<time>,<vh>,<vl>,<vl></vl></vl></vh></time> :SET6 <step>,<cur>,<time>,<vh>,<vl></vl></vh></time> :SET7 <step>,<cur>,<time>,<vh>,<vl></vl></vh></time> :SET7 <step>,<cur>,<time>,<vh>,<vl></vl></vh></time> :SET7 <step>,<cur>,<time>,<vh>,<vl></vl></vh></time> :SET7 <step>,<cur>,<time>,<vh>,<vl>:SET8 <step>,<tur>,<ih>,<il>,,<tl>:SET8 <<step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl></vl></vl></vh></time></cur></vol></step></tl>:SET9 <<step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl>:SET8 <<step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl>:SET9 <<step>,<float></float></step></vl></vl></vh></time></cur></vol></step></vl></vl></vh></time></cur></vol></step></il></ih></tur></step></vl></vh></time></cur></step></cur></step></cur></step></cur></step></cur></step></cur></step></cur></step></cur></step></cur></step></cur></step></cur></step></vl></vh></cur></step></cur></vol></step></cur></vol></step></step></int></int></range></range></range></float></float></float></pre>	: TYPE	{li,NiMH,NiCD,SLA}
<pre>:CAP <float> :MODE {cont,step} :MODE {cont,step} :VNO <range> :VMODE {auto,hold} :RNO <range> :RMODE {auto,hold} :TOTAL {int> :STEP {int> :SET0 <step> :SET1 <step>,<vol>,<cur>,<time>,<vh>,<vl> </vl></vh></time></cur></vol></step></step></range></range></float></pre> :SET3 <step>,<vol>,<cur>,<time>,<vh>,<vl> :SET4 <step>,<cur>,<steptime>,<ih>,<il>,<il> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<rl> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<rl> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<vl> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<vl> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<vl> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<vl> :SET7 <step>,<cur>,<time>,<vh>,<vl>,<vl> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<vl> :SET7 < :SET8 <<step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl> :SET8 <<step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl>,<vl> :SET8 <</vl></vl></vl></vh></time></cur></vol></step></vl></vl></vh></time></cur></vol></step></vl></vl></vh></time></cur></step></vl></vl></vh></time></cur></step></vl></vl></vh></time></cur></step></vl></vl></vh></time></cur></step></vl></vl></vh></time></cur></step></vl></vl></vh></time></cur></step></rl></vl></vh></time></cur></step></rl></vl></vh></time></cur></step></il></il></ih></steptime></cur></step></vl></vh></time></cur></vol></step>	:VOL	<float></float>
<pre>:MODE {cont,step} :VNO <range> :VMODE {auto,hold} :RNO <range> :RMODE {auto,hold} :RNO <range> :RMODE {auto,hold} :TOTAL <int> :STEP <int> :STEP <int> :SET0 <step> :SET1 <step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl> :SET2 <step>,<rh>,<rl>,<vh>,<vl>,<vl>,<vl> :SET4 <step>,<cur>,<time>,<vh>,<vl>,<vl>,<steptime>,<ih>,<il> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<rl> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<rl> :SET7 <step>,<cur>,<time>,<vh>,<vl>,<rl> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<vl>,<rl> :SET7 <step>,<cur>,<time>,<vh>,<vl>,<vl>,<vl>,<vl>,<vl>,<vl>,<vl>,<vl< td=""><td>:CAP</td><td><float></float></td></vl<></vl></vl></vl></vl></vl></vl></vl></vh></time></cur></step></rl></vl></vl></vh></time></cur></step></rl></vl></vh></time></cur></step></rl></vl></vh></time></cur></step></rl></vl></vh></time></cur></step></il></ih></steptime></vl></vl></vh></time></cur></step></vl></vl></vl></vh></rl></rh></step></vl></vl></vh></time></cur></vol></step></step></int></int></int></range></range></range></pre>	:CAP	<float></float>
<pre>:VNO </pre> :VNO :VNO <pre>(auto,hold) RNO </pre> :RNO <pre>(auto,hold) TOTAL </pre> int> :STEP int> :SET0 :SET1 <pre>(step>,<vol>,<cur>,<time>,<vh>,<vl> </vl></vh></time></cur></vol></pre> :SET3 <pre>(step>,<vol>,<cur>,<time>,<vh>,<vl> </vl></vh></time></cur></vol></pre> :SET4 <pre>(step>,<cur>,<time>,<vh>,<vl> </vl></vh></time></cur></pre> :SET6 <pre>(step>,<cur>,<time>,<vh>,<vl> </vl></vh></time></cur></pre> :SET6 <pre>(step>,<cur>,<time>,<vh>,<vl> </vl></vh></time></cur></pre> :SET7 <pre>(step>,<cur>,<time>,<vh>,<vl> </vl></vh></time></cur></pre> <pre>(step>,<cur>,<time>,<vh>,<vl> </vl></vh></time></cur></pre> <pre>(step>,<cur>,<time>,<vh>,<vl> </vl></vh></time></cur></pre> <pre>(step>,<cur>,<time>,<vh>,<vl>,<rl> </rl></vl></vh></time></cur></pre> <pre>(step>,<cur>,<time>,<vh>,<vl>,<vl> </vl></vl></vh></time></cur></pre> <pre>(step>,<cur>,<time>,<vh>,<vl>,<vl> </vl></vl></vh></time></cur></pre> <pre>(step>,<cur>,<time>,<vh>,<vl>,<vl>,<tl> </tl></vl></vl></vh></time></cur></pre> <pre>(step>,<cur>,<time>,<vh>,<vl>,<tl></tl></vl></vh></time></cur></pre> <pre>(step>,<cur>,<time>,<vh>,<vl>,<vl>,<tl></tl></vl></vl></vh></time></cur></pre> <pre>(step>,<cur>,<time>,<vh>,<vl>,<vl>,<tl></tl></vl></vl></vh></time></cur></pre> <pre>(step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl>,<vl>,<vl>,<vl>,<vl>,<vl>,<vl< td=""><td>: MODE</td><td>{cont,step}</td></vl<></vl></vl></vl></vl></vl></vl></vl></vh></time></cur></vol></pre>	: MODE	{cont,step}
<pre>:VMODE {auto,hold} :RNO <range> :RMODE {auto,hold} :RMODE {auto,hold} :TOTAL <int> :STEP <int> :STEP <int> :SET0 <step> :SET1 <step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl> :SET2 <step>,<rh>,<rl>,<rl>,<vl>,<time>,<vh>,<vl>,<vl> :SET4 <step>,<cur>,<time>,<ih>,<il>,<il> :SET5 <step>,<cur>,<time>,<ih>,<il>,<il> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<vl>,<rl> :SET7 <step>,<cur>,<time>,<vh>,<vl>,<vl>,<il> :SET6 <step>,<cur>,<time>,<ih>,<il> :SET7 <step>,<cur>,<time>,<vh>,<vl>,<vl>,<vl>,<il> :SET7 <step>,<cur>,<time>,,<vl>,<vl>,<vl>,<vl>,<il> :SET7 <step>,<cur>,<time>,<vh>,<vl>,<vl>,<steptime>,<ih>,<il> :SET8 <step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl>,<steptime>,<ih>,<il>,<il> :SET8 <step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl>,<vl>,<vl>,<il>,<il>,<il> :SET8 <<step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl>,<vl>,<vl>,<vl>,<vl>,<vl>,<vl< td=""><td>: VNO</td><td><range></range></td></vl<></vl></vl></vl></vl></vl></vl></vl></vh></time></cur></vol></step></il></il></il></vl></vl></vl></vl></vh></time></cur></vol></step></il></il></ih></steptime></vl></vl></vh></time></cur></vol></step></il></ih></steptime></vl></vl></vh></time></cur></step></il></vl></vl></vl></vl></time></cur></step></il></vl></vl></vl></vh></time></cur></step></il></ih></time></cur></step></il></vl></vl></vh></time></cur></step></rl></vl></vl></vh></time></cur></step></il></il></ih></time></cur></step></il></il></ih></time></cur></step></vl></vl></vh></time></vl></rl></rl></rh></step></vl></vl></vh></time></cur></vol></step></step></int></int></int></range></pre>	: VNO	<range></range>
:RNO <range> :RMODE {auto,hold} :TOTAL <int> :STEP <int> :SET0 <step> :SET1 <step>,<tol>, <cur>, <time>, <vh>, <vl>, <time> :SET2 <step>, <vol>, <cur>, <time>, <vh>, <vl>, <vl></vl></vl></vh></time> :SET3 <step>, <vol>, <cur>, <time>, <vh>, <vl>, <vl> :SET4 <step>, <cur>, <time>, <ih>, <il> :SET5 <step>, <cur>, <time>, <vh>, <vl>, <vl> :SET6 <step>, <cur>, <time>, <stopcur>, <stepcur>, <steptime>, <ih>, <il>, <tl></tl> :SET8 <step>, <tur>, <ti>, <step>, <vol>, <cur>, <time>, <vh>, <vl>, <tl></tl> :SET9 <step>, <vol>, <cur>, <time>, <vh>, <vl>, <vl></vl></vl></vh></time></cur></vol></step></vl></vh></time></cur></vol></step></ti></tur></step></il></ih></steptime></stepcur></stopcur></time></cur></step></vl></vl></vh></time></cur></step></il></ih></time></cur></step></vl></vl></vh></time></cur></vol></step></cur></vol></step></time></vl></vh></time></cur></tol></step></step></int></int></range>	: VMODE	{auto,hold}
<pre>:RMODE {auto,hold} :TOTAL <int> :STEP <int> :STEP <int> :SET0 <step> :SET1 <step>,<vol>,<cur>,<time>,<vh>,<vl> :SET2 <step>,<rh>,<rl>,<vh>,<vl>,<time> :SET3 <step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl> :SET4 <step>,<vol>,<cur>,<time>,<vh>,<vl> :SET5 <step>,<cur>,<time>,<ih>,<il> :SET6 <step>,<cur>,<time>,<vh>,<vl>,<rl> :SET7 <step>,<cur>,<time>,<vh>,<vl>,<rl> :SET8 <step>,<cur>,<time>,,<vl>,<vl> :SET8 <step>,<tim>,<tl> :SET9 <step>,<vol>,<cur>,<time>,<vh>,<vl>,<tl> :SET9 <step>,<vol>,<cur>,<time>,<vh>,<vl>,<tl> :SET9 <step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl>,<tl></tl></vl></vl></vh></time></cur></vol></step></tl></vl></vh></time></cur></vol></step></tl></vl></vh></time></cur></vol></step></tl></tim></step></vl></vl></time></cur></step></rl></vl></vh></time></cur></step></rl></vl></vh></time></cur></step></il></ih></time></cur></step></vl></vh></time></cur></vol></step></vl></vl></vh></time></cur></vol></step></time></vl></vh></rl></rh></step></vl></vh></time></cur></vol></step></step></int></int></int></pre>	: RNO	<range></range>
:TOTAL <int> :STEP <int> :SET0 <step> :SET1 <step>,<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></vol></step></step></int></int>	: RMODE	{auto,hold}
:STEP <int> :SET0 <step> :SET1 <step>,<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></vol></step></step></int>	: TOTAL	<int></int>
:SET0 <step> :SET1 <step>,<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time>:SET9<step><<ti><ti><ti><ti><ti><ti><ti><ti><ti><t< td=""><td>:STEP</td><td><int></int></td></t<></ti></ti></ti></ti></ti></ti></ti></ti></ti></step></cur></vol></step></step>	:STEP	<int></int>
:SET1 <step>,<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></vol></step>	:SETO	<step></step>
:SET2 <step>,<rh>,<rl>,<vh>,<vl>,<time> :SET3 <step>,<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></vol></step></time>:SET9<step><<tu><tu><tu><tu><tu><tu><tu><tu><tu><t< td=""><td>:SET1</td><td><step>,<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></vol></step></td></t<></tu></tu></tu></tu></tu></tu></tu></tu></tu></step></vl></vh></rl></rh></step>	:SET1	<step>,<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></vol></step>
:SET3 <step>,<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time>,<vh>,<vl>,<stepcur>,,<stepcur>,,<stepcur>,,<stepcur>,,<stepcur>,,<stepcur>,,<vh>,<vl>,<rh>,<rl>,<vh>,<vl>,<vl>,<rh>,<rl>,<ti>:SET6,<step>,<cur>,<time>,<vh>,<vl>,<vl></vl></vl></vh></time>,<stepcur>,,<stepcur>,,<stepcur>,,<stepcur>,,<stepcur>,,,<tl></tl>:SET8 <step>,<time>,<vh>,<vl>,<tl></tl>:SET9 <step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl>,<vl>:SET <step>,<float></float></step></vl></vl></vl></vh></time></cur></vol></step></vl></vh></time></step></stepcur></stepcur></stepcur></stepcur></stepcur></cur></step></ti></rl></rh></vl></vl></vh></rl></rh></vl></vh></stepcur></stepcur></stepcur></stepcur></stepcur></stepcur></vl></vh></cur></vol></step>	:SET2	<step>,<rh>,<rl>,<vh>,<vl>,<time></time></vl></vh></rl></rh></step>
:SET4 <step>,<startcur>,<stopcur>,<stepcur>, <vol>,<steptime>,<ih>,<il>:SET5<step>,<cur>,<time>,<vh>,<vl>,<rh>,<rl>:SET6<step>,<cur>,<time>,<vh>,<vl>:SET7<step>,<startcur>,<stopcur>,<stepcur>, <steptime>,<ih>,<il>,<tl></tl>:SET8<step>,<tur>,<stime>,<vh>,<vl>,<tl></tl>:SET9<step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl>:SET<step>,<float></float></step></vl></vl></vh></time></cur></vol></step></vl></vh></stime></tur></step></il></ih></steptime></stepcur></stopcur></startcur></step></vl></vh></time></cur></step></rl></rh></vl></vh></time></cur></step></il></ih></steptime></vol></stepcur></stopcur></startcur></step>	:SET3	<step>,<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></vol></step>
<vol>,<steptime>,<ih>,<il> :SET5 <step>,<cur>,<time>,<vh>,<vl>,<rh>,<rl> :SET6 <step>,<cur>,<time>,,vh>,<vl> :SET7 <step>,<startcur>,<stopcur>,<stepcur>,<stepcur>,<steptime>,<ih>,<il>,<tl></tl> :SET8 <step>,<tur>,<time>,<vh>,<vl>,<tl></tl> :SET9 <step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl> :SET <step>,<float></float></step></vl></vl></vh></time></cur></vol></step></vl></vh></time></tur></step></il></ih></steptime></stepcur></stepcur></stopcur></startcur></step></vl></time></cur></step></rl></rh></vl></vh></time></cur></step></il></ih></steptime></vol>	:SET4	<pre><step>,<startcur>,<stopcur>,<stepcur>,</stepcur></stopcur></startcur></step></pre>
:SET5 <step>,<cur>,<time>,<vh>,<vl>,<rh>,<rl> :SET6 <step>,<cur>,<time>,<vh>,<vl></vl></vh></time>,<vh>,<vl></vl></vh></cur></step></rl></rh></vl></vh></time>,<stepcur>,<stepcur>,<steptime>,<ih>,<il>,<tl></tl> :SET8 <step>,<time>,<vh>,<vl>,<tl></tl> :SET9 <step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl>,<vl> :SET <step>,<float></float></step></vl></vl></vl></vh></time></cur></vol></step></vl></vh></time></step></il></ih></steptime></stepcur></stepcur></cur></step>		<vol>,<steptime>,<ih>,<il></il></ih></steptime></vol>
<pre>:SET6 <step>,<cur>,<time>,<vh>,<vl> :SET7 </vl></vh></time></cur></step></pre> <step>,<startcur>,<stopcur>,<stepcur>, <steptime>,<ih>,<il>,<tl> :SET8 <step>,<time>,<vh>,<vl>,<tl> :SET9 <step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl><<l> </l></vl></vl></vh></time></cur></vol></step></tl></vl></vh></time></step></tl></il></ih></steptime></stepcur></stopcur></startcur></step>	:SET5	<step>,<cur>,<time>,<vh>,<vl>,<rh>,<rl></rl></rh></vl></vh></time></cur></step>
:SET7 <step>,<startcur>,<stopcur>,<stepcur>,<stepcur>,<stepcur>,<steptime>,<ih>,<il>,<tl></tl> :SET8 <step>,<time>,<vl>,<vl>,<tl>,<tl></tl> :SET9 <step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl></vl></vl></vh></time></cur></vol></step></tl> :SET <step>,<float></float></step></vl></vl></time></step></il></ih></steptime></stepcur></stepcur></stepcur></stopcur></startcur></step>	:SET6	<step>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></step>
<steptime>,<ih>,<il>,<tl>,<tl></tl> :SET8 <step>,<time>,<vl>,<vl>,<tl>,<tl></tl> :SET9 <step>,<vol>,<cur>,<time>,<vh>,<vl>,<vl></vl></vl></vh></time></cur></vol></step></tl> :SET <step>,<float></float></step></vl></vl></time></step></tl></il></ih></steptime>	:SET7	<step>,<startcur>,<stopcur>,<stepcur>,</stepcur></stopcur></startcur></step>
:SET8 <step>,<time>,<vh>,<vl>,,<tl> :SET9 <step>,<vol>,<cur>,<time>,<vh>,<vl> :SET <step>,<float></float></step></vl></vh></time></cur></vol></step></tl></vl></vh></time></step>		<steptime>,<ih>,<il>,,<tl></tl></il></ih></steptime>
:SET9 <step>,<vol>,<cur>,<time>,<vh>,<vl>:SET<step>,<float></float></step></vl></vh></time></cur></vol></step>	:SET8	<step>,<time>,<vh>,<vl>,,<tl></tl></vl></vh></time></step>
:SET <step>,<float></float></step>	:SET9	<step>,<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></vol></step>
	:SET	<step>,<float></float></step>

8.2.2.1 GROUP:STATE

GROUP:STATE 用来设置综合测试状态

命令语法	<pre>GROUP:GROUP < on,off ></pre>			
参数	On: 启动测试			
	Off: 停止测试			
例如	发送> group:state on <nl>//设置仪器开始测试</nl>			
查询语法	GROUP: STATE?			
查询响应	< on,off > <nl></nl>			
例如	发送> GROUP:STATE?< <u><nl></nl></u>			
	接收> on< <u>NL></u>			

8.2.2.2 GROUP:FETCH

GROUP:FETCH 用来获取综合测试结果

查询语法	GROUP: FETCH?				
查询响应	<int>,<fu< th=""><th colspan="4"><int>,<func>,<comp>,<float1>,<float2>,<float3>,<float4></float4></float3></float2></float1></comp></func></int></th></fu<></int>	<int>,<func>,<comp>,<float1>,<float2>,<float3>,<float4></float4></float3></float2></float1></comp></func></int>			
参数	Int	>0 时=步数	0=空		
	Func	NL	호		

		ACT		电池激	姑测试	1					
		VR		电压内	阻测试	1 7					
		CRG		电池充	5电测试	1 1					
		ос		电池过	抗沉淀	1 1					
		DR		直流内	阻测试	1 1					
		DC		电池放	电测试	1 1					
		ODC		电池过	放测试	1 7					
		SHT		短路测] 试测试						
		RST		电池协	复测试						
	Comp	当前步	导骤比较	器状态	(0: ਵ	拾 , 1:	不合相	各)			
		NL	ACT	VR	CRG	OC	DR	DC	ODC	SHT	RST
	Float1	空	电压	电压	电压	电压	电压	电压	电压	电压	电压
	Float2	空	电流	电阻	电流	电流	电流	电流	电流	电流	电流
	Float3	空	定时	定时	定时	定时	电阻	定时	定时	定时	定时
	Flaot4	空	空	空	空	空	定时	空	空	空	空
例如	发送> 0	ROUP:	FETCH	? <nl></nl>							
	接收 > 0	, ACT	,0,1.0)e+01,	5.0e-0	01,5.0	e-01,	0 <i><nl></nl></i>			

8.2.2.3 GROUP:FILE

GROUP:FILE 用来设置综合测试组号

命令语法	<pre>GROUP:FILE < group1,group2,group3,,group10 ></pre>
参数	Group1: 第1组
	Group2: 第2组
	000
	Group3: 第10组
例如	发送> group:file group1< <u>NL></u> //设置综合测试组为第一组
查询语法	GROUP: FILE?
查询响应	< group,group2,group3,,group10 > <nl></nl>
例如	发送> GROUP:FILE?
	接收> group1< <u>NL></u>

8.2.2.4 GROUP:TYPE

GROUP:TYPE 用来设置综合测试电池类型

命令语法	GROUP:TYPE < Li,NiMH,NiCD,SLA >
参数	Li: 锂电池
	NiMH: 镍氢电池
	NiCD: 镍铬电池
	SLA: 铅酸电池
例如	发送> group:type Li <nl>//设置综合测试电池类型为锂电池</nl>
查询语法	GROUP: TYPE?
查询响应	< Li,NiMH,NiCD,SLA >< <u>NL></u>
例如	发送> GROUP:TYPE?

接收> Li<<u>NL></u>

8.2.2.5 GROUP:VOL

GROUP: VOL 用来设置综合测试标称电压

命令语法	GROUP:VOL < float >
参数	float: 测试电池的标称电压值
例如	发送> group:vol 10.000< <u>NL></u> //设置电池标称电压为 10.000V
查询语法	GROUP: VOL?
查询响应	< float > <nl></nl>
例如	发送> GROUP: VOL? <u><nl></nl></u>
	接收> 1.0e+01< <u>NL></u>

8.2.2.6 GROUP:CAP

GROUP:CAP 用来设置综合测试标称容量

命令语法	GROUP:CAP < float >
参数	Float: 测试电池的标称容量值
例如	发送> group:cap 0.1000//设置电池标称容量为 0.1AH
查询语法	GROUP: CAP?
查询响应	< float > <nl></nl>
例如	发送> GROUP: CAP?
	接收> 1.0e-01< <u>NL></u>

8.2.2.7 GROUP:MODE

GROUP:MODE 用来设置综合测试模式

命令语法	GROUP:MODE < cont, step >
参数	cont: 连续测试模式
	step: 单步测试模式
例如	发送> group:mode cont <nl>//设置群组测试模式为连续模式</nl>
查询语法	GROUP: MODE?
查询响应	< cont, step > <nl></nl>
例如	发送> GROUP:MODE?< <u><nl></nl></u>
	接收> cont <nl></nl>

8.2.2.8 GROUP:VNO

GROUP:VNO 用来设置综合测试电压量程号

命令语法	GROUP:VNO < int >
参数	int:综合测试电压量程号,设置完量程号后电压量程模式自动切换成 HOLD 模式
例如	发送> group:vno 1 <nl>//设置电压量程为1量程</nl>
查询语法	GROUP: VNO?

查询响应	< int > <nl></nl>		
例如	发送>	GROUP: VNO? <nl></nl>	
	接收>	1 <i><nl></nl></i>	

8.2.2.9 GROUP:VMODE

GROUP:VMODE 用来设置综合测试电压量程模式

命令语法	GROUP:VMODE < auto, hold >	
参数	auto:综合测试电压量程为 AUTO 模式	
	hold:综合测试电压量程为 HOLD 模式	
例如	发送> group:vmode auto <nl>//设置电压量程自动模式</nl>	
查询语法	GROUP: VMODE?	
查询响应	< auto, hold > <nl></nl>	
例如	发送> GROUP: VMODE? < <u>NL</u> >	
	接收> auto< <u>NL></u>	

8.2.2.10 GROUP:RNO

GROUP: RNO 用来设置综合测试电阻量程号

命令语法	GROUP:RNO < int >
参数	int: 综合测试电阻量程号,设置完量程号后电阻量程模式自动切换成 HOLD 模式
例如	发送> group:rno 1< <u>NL></u> //设置电阻量程为1量程
查询语法	GROUP: RNO?
查询响应	< int >< <u>NL</u> >
例如	发送> GROUP:RNO?< <u>NL</u> >
	接收> 1< <u>NL></u>

8.2.2.11 GROUP:RMODE

GROUP: RMODE 用来设置综合测试电阻量程模式

命令语法	<pre>GROUP:RMODE < auto,hold ></pre>
参数	auto:综合测试电阻量程为 AUTO 模式
	hold:综合测试电阻量程为 HOLD 模式
例如	发送> group:rmode auto <nl>//设置电阻量程自动模式</nl>
查询语法	GROUP: RMODE?
查询响应	< auto, hold > <nl></nl>
例如	发送> GROUP:RMODE?< <u><nl></nl></u>
	接收> auto< <u>NL></u>

8.2.2.12 GROUP:TOTAL

GROUP: TOTAL 用来设置综合测试总测试步数

命令语法 GROUP:TOTAL < int >

参数	int: 综合测试总测试步数
例如	发送> group:total 9 <nl>//设置综合测试总步数为 9</nl>
查询语法	GROUP: TOTAL?
查询响应	< int > <nl></nl>
例如	发送> GROUP: TOTAL?< <u><nl></nl></u>
	接收> 9.0e+00< <u>NL></u>

8.2.2.13 GROUP:STEP

GROUP:STEP 用来设置综合测试当前步骤

命令语法	GROUP:STEP < int >	
参数	int: 设置综合测试当前步骤	
例如	发送> group:step 1< <u>NL></u> //设置综合测试当前步骤为1	
查询语法	GROUP: STEP?	
查询响应	< int > <nl></nl>	
例如	发送> GROUP:STEP?	
	接收> 1.0e+00< <u><nl></nl></u>	

8.2.2.14 GROUP:SET0

GROUP:SET0 用来设置综合测试功能为【空】的参数

命令语法	GROUP:SET0 < step >
参数	step: 综合测试需要配置的步数
例如	发送> group:set0 1< <u>NL>//设置综合测试步骤</u> 1为NULL

8.2.2.15 GROUP:SET1

GROUP:SET1 用来设置综合测试功能为【电池激活】的参数

命令语法	<pre>GROUP:SET1 < step, vol,cur,time,vh,vl ></pre>
参数	step:综合测试需要配置的步数
	vol: 激活电压值
	cur: 激活电流值
	time: 测试时间
	vh: 比较器电压上限
	▶1: 比较器电压下限
例如	发送> group:set1 2,9.000, 0.1000,10.0,8.800,8.5000 <nl></nl>
	// <mark>设置综合测试步骤 2 为电池</mark> 激活,激活电压 9.000v,激活电流 0.1000A,测试
	时间 10 秒,比较器电压上限 8.8V,电压下限 8.5V

8.2.2.16 GROUP:SET2

GROUP:SET2 用来设置综合测试功能为【电压内阻】的参数

命令语法	<pre>GROUP:SET2 < step, rh,rl,vh,vl,time ></pre>
参数	step:综合测试需要配置的步数
	rh: 比较器电阻上限
	rl: 比较器电阻下限
	vh: 比较器电压上限
	vl: 比较器电压下限
	time: 测试时间
 石山 カロ	
אַגעיק	友达> group:set2 3,1.0000, 0.1000,8.800,8.5000, 10.0< <u><nl></nl></u>
	//设置综合测试步骤 3 为电压内阻,电阻上限 1.000Ω,电阻下限 0.1000Ω,比较
	器电压上限 8.8v, 电压下限 8.5v, 测试时间 10.0 秒

8.2.2.17 GROUP:SET3

GROUP:SET3 用来设置综合测试功能为【充电测试】的参数

命令语法	<pre>GROUP:SET3 < step, vol,cur,time,vh,vl ></pre>
参数	step: 综合测试需要配置的步数
	vol: 充电电压值
	cur: 充电电流值
	time: 测试时间
	vh: 比较器电压上限
	▼1: 比较器电压下限
例如	发送> group:set3 4,9.000, 0.1000,10.0,8.800,8.5000< <u>NL></u>
	// <mark>设置综合测试步骤 4 为电池</mark> 激活,充电电压 9.000v,充电电流 0.1000A,测试
	时间 10 秒,比较器电压上限 8.8V,电压下限 8.5V

8.2.2.18 GROUP:SET4

GROUP:SET4 用来设置综合测试功能为【过充测试】的参数

命令语法	GROUP:SET4	
	< step, startcur, stopcur, stepcur, vol, steptime, ih, il >	
参数	step: 综合测试需要配置的步数	
	startcur: 起始电流	
	stopcur: 截止电流	
	stepcur: 步进电流	
	vol: 电压值	
	steptime: 步进时间	
	ih: 比较器电流上限	
	i1: 比较器电流下限	
例如	发送> group:set4 5, 1.0, 2.0,0.1,1.0, 1.7,1.6< <nl></nl>	
	//设置综合测试步骤 5 为过充测试,起始电流 1.0A, 结束电流 2.0A, 步进电流	
	0.1A, 步进时间 1.0 秒,保护电流上限 1.7A,保护电流下限 1.6A	

8.2.2.19 GROUP:SET5

GROUP:SET5 用来设置综合测试功能为【直流内阻】的参数

命令语法	<pre>GROUP:SET5 < step, cur,time,vh,vl,rh,rl ></pre>
参数	step: 综合测试需要配置的步数
	cur: 电池带载电流
	time: 电池带载时间
	vh: 比较器电压上限
	▶1: 比较器电压下限
	rh: 比较器电阻上限
	r1: 比较器电阻下限
例如	发送> group:set5 6,1.0, 1.0,8.800,8.5000,1.0,0.7< <u>NL></u>
	//设置综合测试步骤 6 为直流内阻,带载电流 1.0A,带载时间 1.0 秒,比较器电
	压上限 8.8v, 电压下限 8.5v, 比较器电阻上限 1.0Ω, 下限 0.7Ω

8.2.2.20 GROUP:SET6

GROUP:SET6 用来设置综合测试功能为【放电测试】的参数

命令语法	GROUP:SET6 < step, cur,time,vh,vl >	
参数	step: 综合测试需要配置的步数	
	cur: 带载电流	
	time: 测试时间	
	vh: 比较器电压上限	
	▶1: 比较器电压下限	
例如	发送> group:set6 7, 1.0, 10.0,8.1,8.0< <u>NL></u>	
	//设置综合测试步骤 7 为放电测试, 带载电流 1.0A, 测试时间 10.0 秒, 比较器电	
	压上限 8.1v, 电压下限 8.0v	

8.2.2.21 GROUP:SET7

GROUP:SET7 用来设置综合测试功能为【过放测试】的参数

命令语法	GROUP: SET7		
	< step, s	<pre>tartcur,stopcur,stepcur,steptime,ih,il, th,tl ></pre>	
参数	step: 综合测试需要配置的步数		
	startcur:	起始电流	
	stopcur:	stopcur: 截止电流	
	stepcur:	步进电流	
	steptime:	步进时间	
	ih:	比较器电流上限	
	il:	比较器电流下限	
	th:	比较器时间上限	
	tl:	比较器时间下限	
例如	发送> grou	np:set7 8, 1.0, 2.0,0.1,0.001, 1.7,1.6, < <u>NL></u>	

//设置综合测试步骤 8 为过充测试,起始电流 1.0A,结束电流 2.0A,步进电流
 0.1A,步进时间 1 毫秒,保护电流上限 1.7A,保护电流下限 1.6A,保护时间上限
 10.0 毫秒,保护时间下限 8.0 毫秒

8.2.2.22 GROUP:SET8

GROUP:SET8 用来设置综合测试功能为【短路测试】的参数

命令语法	GROUP:SET8 < step, time,vh,vl,th,tl >	
参数	step: 综合测试需要配置的步数	
	time: 测试时间	
	vh: 保护电压上限	
	▼1: 保护电压下限	
	th: 保护时间上限	
	tl: 保护时间下限	
例如	发送> group:set8 9, 0.001, 0.1,0.001,0.0005, 0.0001< <u>NL></u>	
	//设置综合测试步骤 9 为短路测试,测试时间 1.0 毫秒,保护电压上限 0.1v,保	
	护电压下限 0.001v,保护时间上限 0.5 毫秒,保护时间下限 0.1 毫秒	

8.2.2.23 GROUP:SET9

GROUP:SET9 用来设置综合测试功能为【恢复测试】的参数

命令语法	GROUP:SET9	
	< step, vol,cur,time,vh,vl >	
参数	step: 综合测试需要配置的步数	
	vol: 充电电压	
	cur: 充电电流	
	time: 充电时间	
	vh: 比较器电压上限	
	▶1: 比较器电压下限	
例如	发送> group:set9 10, 9.0, 1.0,10.0,8.8, 8.7< <u>NL></u>	
	//设置综合测试步骤 10 为过充测试,充电电压 9.0v,充电电流 1.0A,充电时间	
	10 秒,电压上限 8.8v,电压下限 8.7v	

8.2.2.24 GROUP:SET?

GROUP:SET? 用来获取综合测试各步骤的参数

查询语	吾法	GROUP: SE	T? <step></step>
查询响	向应	空:	<step>,"null"</step>
		电池激活:	<pre><step>,"act",<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></vol></step></pre>
		电压内阻:	<pre><step>, "vr", <rh>, <rl>, <vh>, <vl>, <time></time></vl></vh></rl></rh></step></pre>
		充电测试:	<step>,"chg",<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></vol></step>
		过充测试:	<pre><step>,"oc",<startcur>,<stopcur>,<stepcur>,</stepcur></stopcur></startcur></step></pre>
			<steptime>,<ih>,<il></il></ih></steptime>

	直流内阻: <step>,"dr",<cur>,<time>,<vh>,<vl>,<rh>,<rl></rl></rh></vl></vh></time></cur></step>	
	放电测试: <step>,"dcg",<cur>,<time>,<vh>,<vl></vl></vh></time></cur></step>	
	过放测试: <step>,"odc",<startcur>,<stopcur>,<stepcur>,</stepcur></stopcur></startcur></step>	
	<steptime>,<ih>,<il>,<tl></tl></il></ih></steptime>	
	短路测试: <step>,"sht",<time>,<vh>,<vl>,,<tl></tl></vl></vh></time></step>	
	恢复测试: <step>,"rst",<vol>,<cur>,<time>,<vh>,<vl></vl></vh></time></cur></vol></step>	
例如	发送> GROUP:SET? 2	
	接收> 2,act,9.0e+00,1.0e+00,1.0e+01,8.8e+00,8.7e+00	

8.2.3 VR 子系统

电压内阻子系统用来设置仪器 VOLRES 设置

表 8-4 VR 命令树

VR	: FETCH	<res>,<vol></vol></res>
命令树	: VNO	<range></range>
	: VMODE	<auto,hold></auto,hold>
	: RNO	<range></range>
	: RMODE	<auto, hold=""></auto,>
	:RLIMIT	<rhigh>,<rlow></rlow></rhigh>
	:VLIMIT	<vhigh>,<vlow></vlow></vhigh>

8.2.3.1 VR:FETCH

VR:FETCH 用来获取电压内阻测试结果

查询语法	VR:FETCH?		
查询响应	<res>,<</res>	<res>,<vol></vol></res>	
例如	发送>	发送> VR:FETCH?< <u><nl></nl></u>	
	接收>	1.0e-01,9.0e+00< <u>NL></u>	

8.2.3.2 VR:VNO

VR:VNO 用来设置电压内阻测试的电压量程号

命令语法	VR:VNO < int >	
参数	int: 电压量程号,设置完量程号后电压量程模式自动切换成 HOLD 模式	
例如	发送> VR: VNO 1 <nl> //设置电压量程号为1</nl>	
查询语法	VR:VNO?	
查询响应	< int > <nl></nl>	
例如	发送> VR:VNO?< <u>NL></u>	
	接收> 1< <u>NL></u>	

8.2.3.3 VR:VMODE

VR:VMODE 用来设置电压内阻测试的电压量程模式

命令语法	VR:VMODE < auto, hold >	
参数	auto: 电压量程为 AUTO 模式	
	hold: 电压量程为 HOLD 模式	

例如	发送> VR:VMODE auto <nl> //设置电压量程为自动模式</nl>		
查询语法	VR:VMODE?		
查询响应	< auto, hold > <nl></nl>		
例如	发送> VR:VMODE?< <u>NL></u>		
	接收> auto< <u>NL></u>		

8.2.3.4 VR:RNO

VR:RNO 用来设置电压内阻测试的电阻量程号

命令语法	VR:RNO < int >		
参数	int: 电阻量程号,设置完量程号后电阻量程模式自动切换成 HOLD 模式		
例如			
查询语法	VR:RNO?		
查询响应	< int > <nl></nl>		
例如	发送> VR:RNO?< <u><nl></nl></u>		
	接收> 1< <u>NL></u>		

8.2.3.5 VR:RMODE

VR:RMODE 用来设置电压内阻测试的电阻量程模式

命令语法	VR:VMODE < auto, hold >		
参数	auto: 电阻量程为 AUTO 模式		
	hold: 电阻量程为 HOLD 模式		
例如	发送> VR:RMODE auto <nl> //设置电阻量程为自动模式</nl>		
查询语法	VR:RMODE?		
查询响应	< auto, hold > <nl></nl>		
例如	发送> VR:RMODE?< <u>NL></u>		
	接收> auto< <u>NL></u>		

8.2.3.6 VR:RLIMIT

VR:RLIMIT 用来设置电压内阻的电阻上下限值

命令语法	VR:RLIMIT < high >,< low >		
参数	High: 电阻上限		
	1ow: 电阻下限		
例如	发送> VR:RLIMIT 1.0,0.9< <u>NL></u> //设置电阻上限为1.0Ω, 下限为0.9Ω		
查询语法	VR:RLIMIT?		
查询响应	< high >,< low > <nl></nl>		
例如	发送> VR:RLIMIT?		
	接收> 1.0e+00,9.0e-01< <u>NL></u>		

8.2.3.7 VR:VLIMIT

VR:VLIMIT 用来设置电压内阻的电压上下限值

命令语法	VR:VLIMIT < high >,< low >		
参数	High: 电压上限		
	1ow: 电压下限		
例如	发送 > VR:VLIMIT 9.0,8.5 <u><nl></nl></u> //设置电压上限为 9.0V, 下限为 8.5V		
查询语法	VR:VLIMIT?		
查询响应	< high >,< low > <nl></nl>		
例如	发送> VR:VLIMIT?		
	接收> 9.0e+00,8.5e+00 <nl></nl>		

8.2.4 DCLOAD 子系统

DCLOAD 子系统用来设置仪器直流负载测试设置

表 8-5 DCLOAD 命令树

: STATE	<on,off></on,off>
: FETCH	<vol>,<cur>,<power>,<res></res></power></cur></vol>
: MODE	<cv,cc,cp,cr></cv,cc,cp,cr>
:LIMIT	<vmax>,<imax>,<pmax></pmax></imax></vmax>
: VALUE	<mode>,<float></float></mode>
	: STATE : FETCH : MODE : LIMIT : VALUE

8.2.4.1 LOAD:STATE

LOAD:STATE 用来设置直流负载测试状态

命令语法	LOAD:STATE < on,off >		
参数	On: 启动测试		
	Off: 停止测试		
例如	发送> load:state on <nl>//设置仪器开始测试</nl>		
查询语法	LOAD: STATE?		
查询响应	< on,off > <nl></nl>		
例如	发送> LOAD:STATE?		
	接收> on< <u>NL></u>		

8.2.4.2 LOAD:FETCH

LOAD:FETCH 用来获取直流负载测试结果

查询语法	LOAD: FETCH?	
查询响应	<vol>,<cur>,<power>,<res></res></power></cur></vol>	
例如	发送>	LOAD:FETCH?< <u>NL></u>
	接收>	8.8e+00,5.0e-01,4.4e+00,1.76e+01< <u>NL></u>

8.2.4.3 LOAD:MODE

LOAD:MODE 用来设置设置直流负载测试模式

命令语法 LOAD:MODE < cv,cc,cpc,cr >

参数	cv: 定电压		
	cc: 定电流		
	cp: 定功率		
	cr: 定电阻		
例如	发送> LOAD:MODE cc <nl> //设置负载模式为定电流模式</nl>		
查询语法	LOAD: MODE?		
查询响应	< cv,cc,cp,cr > <nl></nl>		
例如	发送> LOAD: MODE? <nl></nl>		
	接收> cc< <u>NL></u>		

8.2.4.4 LOAD:LIMIT

LOAD:LIMIT 用来设置直流负载的比较器值

命令语法	LOAD:LIMIT < vmax >,< imax >, <pmax></pmax>	
参数	vmax: 电压上限	
	imax: 电流上限	
	pmax: 功率上限	
例如	发送> LOAD:LIMIT 30.0,15.0,100.0< <u><nl></nl></u>	
	// 设置电压上限为 30.0v, 电流上限为 15.0A, 功率上限为 100.0w	
查询语法	LOAD:LIMIT?	
查询响应	< vmax >,< imax >,< pmax >< <u>NL></u>	
例如	发送> LOAD:LIMIT? <u><nl></nl></u>	
	接收> 3.0e+01,1.5e+01,1.00e+02< <u>NL></u>	

8.2.4.5 LOAD:VALUE

LOAD:VALUE 用来设置直流负载的参数值

命令语法	LOAD:VALUE <mode>,< value ></mode>		
参数	Mode: 负载模式		
	Value: 带载参数		
例如	发送> LOAD:VALUE cc,0.6< <u>NL></u> //设置定电流模式的参数为 0.6A		
查询语法	LOAD: VALUE?		
查询响应	< vset >,< iset >,< pset >,< rset > <nl></nl>		
例如	发送> LOAD:VALUE?		
	接收> 9.0e+00,6.0e-01,1.0e+01,1.0e+02 <nl></nl>		

8.2.5 DCPOWER 子系统

DCPOWER 子系统用来设置仪器直流电源设置

表 8-5 DCPOWER 命令树

Power	: STATE	<on,off></on,off>
命令树	: FETCH	<vol>,<cur>,<power>,<res></res></power></cur></vol>
	: VALUE	<vol>,<cur></cur></vol>

8.2.5.1 POWER:STATE

POWER:STATE 用来设置直流电源测试状态

命令语法	POWER:STATE < on,off >	
参数	On: 启动测试	
	Off: 停止测试	
例如	发送> POWER:state on< <u>NL></u> //设置仪器开始测试	
查询语法	POWER: STATE?	
查询响应	< on,off > <nl></nl>	
例如	发送> POWER:STATE?< <u><nl></nl></u>	
	接收> on< <u>NL</u> >	

8.2.5.2 POWER:FETCH

POWER:FETCH 用来获取直流电源测试结果

查询语法	POWER: FETCH?	
查询响应	<vol>,<cur>,<power>,<res></res></power></cur></vol>	
例如	发送>	POWER: FETCH? < <u>NL</u> >
	接收>	8.8e+00,5.0e-01,4.4e+00,1.76e+01< <u>NL></u>

8.2.5.3 POWER:VALUE

POWER:VALUE 用来设置直流电源的参数值

命令语法	POWER:VALUE <vol>,<cur></cur></vol>	
参数	vol: 输出电压	
	cur: 输出电流	
例如	发送> POWER: VALUE 9.0,1.0 < <u>NL></u> //设置电源参数为电压 9.0V, 电流 1.0A	
查询语法	POWER: VALUE?	
查询响应	< vol >,< cur >,< power >,< res > <nl></nl>	
例如	发送> POWER: VALUE?< <u>NL</u> >	
	接收> 9.0e+00,1.0e+00,9.0e+00,9.0e+00< <u>NL></u>	

8.2.6 CAPACITY 子系统

CAPACITY 子系统用来设置仪器电池容量测试设置

表 8-6 CAPACITY 命令树			
Cap	: STATE	<on,off></on,off>	
命令树	: FETCH	<cap></cap>	
	:FILE	<file1,file2,,file10></file1,file2,,file10>	
	: TYPE	<li,nimh,nicd,sla></li,nimh,nicd,sla>	
	:VOL	<float></float>	
	:CAP	<float></float>	
	:RCV	<float></float>	
	:RCC	<float></float>	
	:DCC	<float></float>	
	:COV	<float></float>	
	: PC	<on,off></on,off>	
	:CYCLE	<int></int>	

8.2.6.1 CAP:STATE

CAP:STATE 用来设置电池容量测试状态

命令语法	CAP:STATE < on,off >		
参数	On: 启动测试		
	off: 停止测试		
例如	发送> CAP:state on< <u>NL></u> //设置仪器开始测试		
查询语法	CAP:STATE?		
查询响应	< on,off > <nl></nl>		
例如	发送> CAP:STATE?		
	接收> on< <u>NL></u>		

8.2.6.2 CAP:FETCH

CAP:FETCH 用来获取电池容量测试结果

查询语法	CAP:FETCH?	
查询响应	<cap></cap>	
例如	发送>	CAP:FETCH?< <u>NL</u> >
	接收>	1.0e-01 <u><nl></nl></u> // 单位 AH

8.2.6.3 CAP:FILE

CAP:FILE 用来选择电池容量测试的文件

命令语法	CAP:FILE < file1,file2,,file10 >		
参数	File1: 文件 1		
	File2: 文件 2		
	File10: 文件 10		
例如	发送> CAP:FILE file1 <nl> //设置电池容量测试调用文件1参数</nl>		
查询语法	CAP:FILE?		
查询响应	< file1, file2,, file10 > <nl></nl>		
例如	发送> CAP:FILE?< <u>NL></u>		
	接收> file1< <u>NL></u>		

8.2.6.4 CAP:TYPE

CAP:TYPE 用来设置电池的类型

命令语法	CAP:TYPE < Li,NiMH,NiCD,SLA >
参数	Li: 锂电池
	NIMH: 镍氢电池
	NiCD: 镍铬电池
	SLA: 铅酸电池
例如	发送> CAP:TYPE Li <nl> //设置电池类型为锂电池</nl>
查询语法	CAP: TYPE?

AT5800 用户手册

查询响应	< Li, NiMH, NiCD, SLA > <nl></nl>		
例如	发送>	CAP:TYPE?< <u>NL</u> >	
	接收>	Li< <u>NL></u>	

8.2.6.5 CAP:VOL

CAP:VOL 用来设置电池标称电压值

命令语法	CAP:VOL < float >		
参数	Float : 被测电池的标称电压		
例如	发送> CAP: VOL 9.0< <u>NL></u> //设置电池标称电压为 9.0V		
查询语法	CAP: VOL?		
查询响应	< float > <nl></nl>		
例如	发送> CAP:VOL?< <u>NL></u>		
	接收> 9.0e+00 <u><nl></nl></u>		

8.2.6.6 CAP:CAP

CAP:CAP 用来设置电池标称容量值

命令语法	CAP:CAP < float >	
参数	Float : 被测电池的标称容量	
例如		
查询语法	CAP:CAP?	
查询响应	< float > <nl></nl>	
例如	发送> CAP:CAP?< <u><nl></nl></u>	
	接收> 1.0e-01< <u>NL></u>	

8.2.6.7 CAP:RCV

CAP:RCV 用来设置电池充电电压

命令语法	CAP:RCV < float >	
参数	Float : 充电电压	
例如	发送> CAP:RCV 9.0< <u>NL></u> //设置充电电压为 9.0V	
查询语法	CAP:RCV?	
查询响应	< float > <nl></nl>	
例如	发送> CAP:RCV?< <u><nl></nl></u>	
	接收> 9.0e+00< <u>NL></u>	

8.2.6.8 CAP:RCC

CAP:RCC 用来设置电池充电电流

命令语法	CAP:RCC < float >
参数	Float : 充电电流
例如	发送> CAP:RCC 1.0< <u>NL></u> //设置充电电流为 1.0A

SCPI 命令参考 61

查询语法	CAP:RCC?	
查询响应	< float > <nl></nl>	
例如	发送>	CAP: RCC?< <u>NL></u>
	接收>	1.0e+00< <u>NL></u>

8.2.6.9 CAP:DCC

CAP:DCC 用来设置电池放电电流

命令语法	CAP:DCC < float >		
参数	Float : 放电电流		
例如	发送> CAP:DCC 1.0 < <u>NL</u> > //设置放电电流为 1.0A		
查询语法	CAP:DCC?		
查询响应	< float > <nl></nl>		
例如	发送> CAP:DCC?< <u>NL></u>		
	接收> 1.0e+00< <u>NL></u>		

8.2.6.10 CAP:COV

CAP:COV 用来设置电池截止电压

命令语法	CAP:COV < float >		
参数	Float : 截止电压		
例如	发送> CAP:COV 8.0 < <u>NL></u> //设置电池截止电压为 8.0V		
查询语法	CAP:COV?		
查询响应	< float > <nl></nl>		
例如	发送> CAP:COV?< <u><nl></nl></u>		
	接收> 8.0e+00< <u>NL></u>		

8.2.6.11 CAP:PC

CAP:PC 用来设置电池预放电

命令语法	CAP:PC < on,off >		
参数	On: 打开预放电功能		
	Off: 关闭预放电功能		
例如	发送> CAP: PC on < <u>NL></u> //设置电池预放电打开		
查询语法	CAP:PC?		
查询响应	< on,off > <nl></nl>		
例如	发送> CAP: PC?< <u>NL></u>		
	接收> on< <u>NL></u>		

8.2.6.12 CAP:CYCLE

CAP:CYCLE 用来设置电池容量测试循环次数

命令语法 CAP:CYCLE < int >

参数	int : 循环次数		
例如	发送> CAP: CYCLE 1 <nl> //设置电池容量测试循环 1次</nl>		
查询语法	CAP: CYCLE?		
查询响应	< int > <nl></nl>		
例如	发送> CAP:CYCLE?< <u>NL</u> >		
	接收> 1< <u>NL></u>		

8.2.7 POWER 子系统

POWER 子系统用来设置功率测试设置

表 8-8 POWER 命令树					
Power	:VOL	<level></level>			
命令树	: FREQ	<50Hz,60Hz>			
	:ILIMIT	<high>,<low></low></high>			
	:PLIMIT	<high>,<low></low></high>			
	:TIME	<time></time>			
	:DELAY	<delay></delay>			
	: FETCH	<vol>,<cur>,<power>,<pf></pf></power></cur></vol>			

8.2.8 ERROR 子系统

ERRor 子系统返回错误信息

查询语法	ERROR?		
查询响应	Error string		
例如	发送>	ERR? <u><nl></nl></u>	
	接收>	no error< <u>NL></u>	

8.2.9 IDN 子系统

IDN?用来查询仪器 ID 号	
查询语法	IDN? Or *IDN?
查询响应	<model>,<revision>,<sn>,< Manufacturer></sn></revision></model>

9.Modbus(RTU)通讯协议

本章包含以下几方面内容。

- 数据格式——了解 Modbus 通讯格式
- 功能──命令行的书写规则
- 变量区域
- 功能码

本章节提供了仪器使用的所有的 SCPI 命令,通过这些 SCPI 命令,可以完全控制仪器所有功能。

9.1 数据格式

我们遵循 Modbus (RTU) 通讯协议, 仪器将响应上位机的指令, 并返回标准响应帧。

参见: ? 您可以与我公司销售部联系,获取安柏仪器通讯测试工具,里面有 Modbus 通讯调试方法。包含了 CRC-16 计算器和浮点数转成 Modbus 浮点数格式。

9.1.1 命令解析规则

图 9-9 Modbus 指令帧

从站地址	功能代码	数据	CRC-16	
		1		
1	1		2 字节	

CRC-16 计算范围

表 9-1 指令帧说明

	至少需要 3.5 字符时间的静噪间隔		
从站地址	1 字节		
	Modbus 可以支持 00~0x63 个从站		
	统一广播时指定为 00		
	在未选配 RS485 选件的仪器里,默认的从站地址为 0x01		
功能码	1 字节		
	0x03:读出多个寄存器		
	0x04:=03H,不使用		
	0x06:写入单个寄存器,可以用 10H 替代		
	0x08:回波测试(仅用于调试时使用)		
	0x10: 写入多个寄存器		
数据	指定寄存器地址、数量和内容		
CRC-16	2 字节,低位在前		
	CyclicRedundancy Check		
	将从站地址到数据末尾的所有数据进行计算,得到 CRC16 校验码		
	至少需要 3.5 字符时间的静噪间隔		

9.1.2 CRC-16 计算方法

- 1 将 CRC-16 寄存器的初始值设为 0xFFFF。
- 2 对 CRC-16 寄存器和信息的第1 个字节数据进行 XOR 运算,并将计算结果返回 CRC 寄存器。
- 3 用 0 填入 MSB, 同时使 CRC 寄存器右移 1 位。
- 4 从 LSB 移动的位如果为 "0",则重复执行步骤(3)(处理下 1 个移位)。从 LSB 移动的位如果为 "1",则对 CRC 寄存器和 0xA001 进行 XOR 运算,并将结果返回 CRC 寄存器。
- 5 重复执行步骤(3)和(4),直到移动8位。
- 6 如果信息处理尚未结束,则对 CRC 寄存器和信息的下1 个字节进行 XOR 运算,并返回 CRC 寄存器,从第
 (3)步起重复执行。
- 7 将计算的结果(CRC 寄存器的值) 从低位字节附加到信息上。

以下是一段 VB 语言的 CRC 计算函数:

```
Function CRC16(data() As Byte) As Byte()
```

```
Dim CRC16Lo As Byte, CRC16Hi As Byte 'CRC 寄存器
Dim CL As Byte, CH As Byte
                              '多项式码&HA001
Dim SaveHi As Byte, SaveLo As Byte
Dim i As Integer
Dim flag As Integer
CRC16Lo = \&HFF
CRC16Hi = &HFF
CL = \&H1
CH = \&HA0
For i = 0 To UBound (data)
   CRC16Lo = CRC16Lo Xor data(i) '每一个数据与 CRC 寄存器进行异或
   For flag = 0 To 7
     SaveHi = CRC16Hi
     SaveLo = CRC16Lo
      CRC16Hi = CRC16Hi \ 2
                             '高位右移一位
                              '低位右移一位
      CRC16Lo = CRC16Lo \setminus 2
      If ((SaveHi And &H1) = &H1) Then '如果高位字节最后一位为 1
         CRC16Lo = CRC16Lo Or &H80 '则低位字节右移后前面补1
      End If
                       '否则自动补 0
      If ((SaveLo And &H1) = &H1) Then '如果 LSB 为 1, 则与多项式码进行异或
         CRC16Hi = CRC16Hi Xor CH
         CRC16Lo = CRC16Lo Xor CL
      End If
    Next flag
Next i
Dim ReturnData(1) As Byte
ReturnData(0) = CRC16Hi
                          'CRC 高位
                           'CRC 低位
ReturnData(1) = CRC16Lo
CRC16 = ReturnData
End Function
```

参见:

我公司的"安柏仪器通讯测试工具"",里面有 Modbus 通讯调试方法。包含了 CRC-16 计算器。

计算出 CRC-16 数据需要附加到指令帧末尾,例如: 1234H:

图 9-1 Modbus 附加 CRC-16 值

从站地址	功能代码	数据	CRO	C-16
			Low H'34	Heigh H'12
1	1		2字	:节

CRC-16计算范围

9.1.3 响应帧

除非是 00H 从站地址广播的指令,其它从站地址仪器都会返回响应帧。

9.1.4 无响应

以下情况, 仪器将不进行任何处理, 也不响应, 导致通讯超时。

- 1. 从站地址错误
- 2. 传输错误
- 3. CRC-16 错误
- 4. 位数错误,例如:功能码 0x03 总位数必须为 8,而接受到的位数小于 8 或大于 8 个字节。
- 5. 从站地址为 0x00 时,代表广播地址,仪器不响应。

9.1.5 错误码

表 9-3 错误码说明			
错误码	名称	说明	优先级
0x01	功能码错误	功能码不存在	1
0x02	寄存器错误	寄存器不存在	2
0x03	数据错误	寄存器数量或字节数量错误	3

0x04 执行错误 数据非法,写入的数据不在允许范围内 4

9.2 功能码

仪器仅支持以下几个功能码,其它功能码,将响应错误帧。

表 9-4 功能码

功能码	名称	说明
0x03	读出多个寄存器	读出多个连续寄存器数据
0x04	与 0x03 相同	请用 0x03 代替
0x08	回波测试	接收到的数据原样返回
0x10	写入多个寄存器	写入多个连续寄存器

9.3 寄存器

仪器的寄存器数量为 2 字节模式,即每次必须写入 2 个字节,例如:速度的寄存器为 0x3002,数据为 2 字节,数值 必须写入 0x0001

数据:

仪器支持以下几种数值:

- 1. 1 个寄存器, 双字节 (16 位) 整数, 例如: 0x64 → 00 64
- 2. 2个寄存器,四字节 (32位) 整数,例如: 0x12345678 → 12 34 56 78
- 3. 2 个寄存器,四字节 (32 位)单精度浮点数, 3.14 → 40 48 F5 C3

参见:

我公司的"安柏仪器通讯测试工具"",里面有 Modbus 通讯调试方法。包含了浮点数转换器。

9.4 读出多个寄存器

Ŷ

图 9-4 读出多个寄存器 (0x03)

从站地址	功能代码	读出开始地址	元素数量	CRC-16
	H'03			
1	1	2	2	2 字节

读出多个寄存器的功能码是 0x03.

表 9-5 读出多个寄存	器	
名称	名称	说明
	从站地址	没有指定 RS485 地址时,默认为 01
0x03	功能码	
	起始地址	寄存器起始地址,请参考 Modbus 指令集
	读取寄存器数量	连续读取的寄存器数量。请参考 Modbus 指令集,以确保
	0001~006A (106)	这些寄存器地址都是存在的,否则将会返回错误帧。

CRC-16	校验码	1
	123213	

图 9-5 读出多个寄存器 (0x03) 响应帧

从站地址	功能代码	3 字节计数	读出数据(元素数量部分)		CRC-16
	1,100				
	H'03				
1	1	1		0~212(2X106)	2
名称		名称		说明	
		从站地址		原样返回	
0x03		功能码		无异常: 0x03	
或 0x83				错误码: 0x83	
		字节数		=寄存器数量 x2	
				例如: 1个寄存器返回 02	2
		数据		读取的数据	
CRC-16		校验码			

9.5 **写入多个寄存器**

9-6 写入多/ 从站地址 功能	个寄存。 能代码	器 (Ox1 读出开如	0) 始地址	元素数量	字节计数	写入数据(元	素数量部分)	CRC-16
H	ł'10					· · · ·		
1 9-6写入多/	1 入寄存	2 器		2	1	0 ~ 208((2X104)	2
名称			名称		说明			
			从站地址	Ŀ	没有指定 R	S485 地址时	,默认为 01	
0x10			功能码					
			起始地址	Ŀ	寄存器起始	地址,请参考	皆 Modbus 指	令集
			写入寄存	序器数量	连续读取的	寄存器数量。	请参考 Mod	bus 指令集,以确例
			0001~0	068 (104)	这些寄存器	地址都是存在	主的,否则将会	会返回错误帧。
			字节数		=寄存器数	量 x2		
CRC-16			校验码					
图 9-7 写)	\多个	寄存器	(0x03)	响应帧				
从站地址	功能	《代码	写入于	干始地址	元素数量	<u>1</u> 2	CRC-16	
	Н	' 1 0						
1		1		2	2		2字节	
名称			名称		说明			
			从站地均	Ŀ	原样返回			
0x10			功能码		无异常: 0x	:10		
或 0x90					错误码: 0x	:90		

寄存器数量	起始地址	
	寄存器数量	
CRC-16 校验码	CRC-16 校验码	

9.6 回波测试

回波测试功能码 0x08,用于调试 Modbus。

图 9-8 回波测试 (0x08)

指令帧

从站地址	功能代码	固定值	测试数据	CRC-16
	H'08	H'00 H'00		
1	1	2	2	2字节

响应帧

从站地址	功能代码	固定值	测试数据	CRC-16
------	------	-----	------	--------

	H'08	H'00	H'00			
1	1	2		2	2字节	

名称	名称	说明
	从站地址	原样返回
0x08	功能码	
	固定值	00 00
	测试数据	任意数值:例如 12 34
	CRC-16 校验码	

例如:

假定测试数据为 0x1234:

指令:	01	08	00 00	12 34	ED 7C(CRC-16)
响应:	01	08	00 00	12 34	ED 7C(CRC-16)

10. Modbus(RTU)指令集

10.1 寄存器总览

以下列出了仪器使用的所有寄存器地址,任何不在表中的地址将返回错误码 0x02.

表10-1 寄存器总览

寄存器地址	名称	数值	说明
电池容量测试			
2000	电池容量测试开关	0000:关闭测试	读写寄存器, 2 字节整数
		0001:启动测试	
2001	电池容量文件号	0000: 文件 1	读写寄存器, 2 字节整数
		0001:文件 2	
		0009: 文件10	
2002	电池类型	0000: 锂电池	读写寄存器, 2 字节整数
		0001: 镍氢电池	
		0002: 镍铬电池	
		0003:铅酸电池	
2003	电池标称电压	4 字节浮点数	读写寄存器,数据占用2个寄存器
2005	电池标称容量	4 字节浮点数	读写寄存器,数据占用2个寄存器
2007	电池充电电压	4 字节浮点数	读写寄存器,数据占用2个寄存器
2009	电池充电电流	4 字节浮点数	读写寄存器,数据占用2个寄存器
200B	电池放电电流	4 字节浮点数	读写寄存器,数据占用2个寄存器
200D	电池截止电压	4 字节浮点数	读写寄存器,数据占用2个寄存器
2010	电池预放电	0000:关闭预放电	读写寄存器, 2 字节整数
		0001:打开预放电	
2011	电池循环次数	0001~0x3E7	读写寄存器, 2 字节整数
2012	电池容量值	4 字节浮点数	只读寄存器,数据占用2个寄存器
电压内阻测试			
2100	电阻量程方式	0000: auto	读写寄存器, 2 字节整数

		0001: hold	
2101	电阻量程号	0000~0005	读写寄存器, 2 字节整数
2102	电压量程方式	0000: auto	读写寄存器, 2 字节整数
		0001: hold	
2103	电压量程号	0000~0001	读写寄存器, 2 字节整数
2104	电阻上限值	4 字节浮点数	读写寄存器,数据占用2个寄存器
2106	电阻下限值	4 字节浮点数	读写寄存器,数据占用2个寄存器
2108	电压上限值	4 字节浮点数	读写寄存器,数据占用2个寄存器
210A	电压下限值	4 字节浮点数	读写寄存器,数据占用2个寄存器
210C	电池内阻值	4 字节浮点数	只读寄存器,数据占用2个寄存器
210E	电池电压值	4 字节浮点数	只读寄存器,数据占用2个寄存器
直流负载测试			
2200	负载测试开关	0000:关闭测试	读写寄存器, 2 字节整数
		0001: 启动测试	
2201	负载测试模式	0000: 定电压	读写寄存器, 2 字节整数
		0001: 定电流	
		0002:定功率	
		0003: 定电阻	
2202	电压上限值	4 字节浮点数	读写寄存器,数据占用2个寄存器
2204	电流上限值	4 字节浮点数	读写寄存器,数据占用2个寄存器
2206	功率上限值	4 字节浮点数	读写寄存器,数据占用2个寄存器
2208	负载设定值	4 字节浮点数	读写寄存器,数据占用2个寄存器
			当前负载测试模式下的参数值
220A	负载电压值	4 字节浮点数	只读寄存器,数据占用2个寄存器
220C	负载电流值	4 字节浮点数	只读寄存器,数据占用2个寄存器
220E	负载功率值	4 字节浮点数	只读寄存器,数据占用2个寄存器
2210	负载电阻值	4 字节浮点数	只读寄存器,数据占用2个寄存器
直流电源测试			
2300	电源测试开关	0000:关闭测试	读写寄存器, 2 字节整数
		0001: 启动测试	
2302	电源输出电压值	4 字节浮点数	读写寄存器,数据占用2个寄存器
2304	电源输出电流值	4 字节浮点数	读写寄存器,数据占用2个寄存器
2306	电源电压值	4 字节浮点数	只读寄存器,数据占用2个寄存器
2308	电源电流值	4 字节浮点数	只读寄存器,数据占用2个寄存器
230A	电源功率值	4 字节浮点数	只读寄存器,数据占用2个寄存器
230C	电源电阻值	4 字节浮点数	只读寄存器,数据占用2个寄存器
综合测试			
2400	群组测试开关	0000:关闭测试	读写寄存器, 2 字节整数
		0001:启动测试	
2401	群组测试文件	0000: 组1	读写寄存器, 2 字节整数
		0001:组2	
		0009:组10	
2402	群组测试电池类型	0000: 锂电池	读写寄存器, 2 字节整数

		0001: 镍氢电池		
		0002: 镍铬电池		
		0003: 铅酸电池		
2404	群组测试标称电压	4 字节浮点数	读写寄存器,	数据占用 2 个寄存器
2408	群组测试标称容量	4 字节浮点数	读写寄存器,	数据占用 2 个寄存器
240A	群组测试模式	0000: 连续	读写寄存器,	2 字节整数
		0001:单步		
240B	群组测试总步数	0001~0x14	读写寄存器,	2 字节整数
240C	群组测试当前步数	0000~0x13	读写寄存器,	2 字节整数
2410	群组测试充电电压	4 字节浮点数	读写寄存器,	数据占用 2 个寄存器
2412	群组测试启动电流	4 字节浮点数	读写寄存器,	数据占用 2 个寄存器
2414	群组测试截止电流	4 字节浮点数	读写寄存器,	数据占用 2 个寄存器
2416	群组测试步进电流	4 字节浮点数	读写寄存器,	数据占用 2 个寄存器
2418	群组测试时间	4 字节浮点数	读写寄存器,	数据占用 2 个寄存器
241A	群组测试电压上限	4 字节浮点数	读写寄存器,	数据占用 2 个寄存器
241C	群组测试电压下限	4 字节浮点数	读写寄存器,	数据占用 2 个寄存器
241E	群组测试电流上限	4 字节浮点数	读写寄存器,	数据占用 2 个寄存器
2420	群组测试电流下限	4 字节浮点数	读写寄存器,	数据占用 2 个寄存器
2422	群组测试电阻上限	4 字节浮点数	读写寄存器,	数据占用 2 个寄存器
2424	群组测试电阻下限	4 字节浮点数	读写寄存器,	数据占用 2 个寄存器
2426	群组测试时间上限	4 字节浮点数	读写寄存器,	数据占用 2 个寄存器
2428	群组测试时间下限	4 字节浮点数	读写寄存器,	数据占用 2 个寄存器
242A	群组测试电压量程方式	0000: auto	读写寄存器,	2 字节整数
		0001: hold		
242B	群组测试电压量程号	0000~0001	读写寄存器,	2 字节整数
242C	群组测试电阻量程方式	0000: auto	读写寄存器,	2 字节整数
		0001: hold		
242D	群组测试电阻量程号	0000~0005	读写寄存器,	2 字节整数
242E	群组测试功能	0000: NULL	读写寄存器,	2 字节整数
		0001:电池激活		
		0002:电压内阻		
		0003:充电测试		
		0004:过充测试		
		0005:直流内阻		
		0006:放电测试		
		0007: 过放测试		
		0008: 短路测试		
		0009:恢复测试		
2430	群组测试电压值	4 字节浮点数	只读寄存器,	数据占用 2 个寄存器
2432	群组测试电流值	4 字节浮点数	只读寄存器,	数据占用 2 个寄存器
2434	群组测试电阻值	4 字节浮点数	只读寄存器,	数据占用 2 个寄存器
2436	群组测试时间值	4 字节浮点数	只读寄存器,	数据占用 2 个寄存器

10.2 **电池容量寄存器**

10.2.1 电池容量测试状态寄存器【2000】

写入

1	2	3	4	5	6	7	8	9	10	11
01	10	20	00	00	01	02	00	01	46	52
	写	寄存	器	寄存器数量		字节	数据		CRC	

响应:

1 2 3 4 5 6 7 8 01 10 20 00 00 01 07 66	1.57-							
01 10 20 00 00 01 07 66	1	2	3	4	5	6	7	8
	01	10	20	00	00	01	07	66
寄存器 寄存器数量 CRC			寄存	器	寄存器数量		CRC	

其中 B8~B9 为测试状态数据: 0001 = 1,此时仪器测试状态为测试中.

读取

1	2	3	4	5	6	7	8
01	03	20	00	00	01	8F	CA
	读	寄存	器	寄存器数量		CRC	

响应:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
01	03	字节	数	居	CRC-	16

10.2.2 电池容量文件号寄存器【2001】

写入

1	2	3	4	5	6	7	8	9	10	11
01	10	20	01	00	01	02	00	01	47	83
	町	寄存	器	寄存器数量		字节	数据		CRC	

响应:

1	2	3	4	5	6	7	8
01	10	20	01	00	01	5B	С9
		寄存	器	寄存器	数量	CRC	2
++ PO			rta. O	001 1	ルレロナハン	四本日子名	

其中 B8~B9 为文件号数据: 0001 = 1,此时仪器使用文件为 FILE1.

读取

1	2	3	4	5	6	7	8
01	03	20	01	00	01	DE	0A
	读	寄存器		寄存器数量		CRC	

响应:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
01	03	字节	数据		CRC-16	
10.2.3 电池容量电池类型寄存器【2002】

写入

1	2	3	4	5	6	7	8	9	10	11
01	10	20	02	00	01	02	00	00	86	70
	写	寄存	器	寄存器	数量	字节	数排	居	CR	С
ாக்க்										

• • • • • •								
1	2	3	4	5	6	7	8	
01	10	20	00	00	01	AB	С9	
		寄存	器	寄存器	数量	CRC	2	

其中 B8~B9 为电池类型数据: 0000 = 0,此时仪器电池类型为锂电池.

读取

1	2	3	4	5	6	7	8
01	03	20	02	00	01	2E	0A
	读	寄存	器	寄存器	数量	CRC	2

响应:

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	字节	数据		CRC-	16

10.2.4 电池标称电压寄存器【2003】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	20	03	00	02	04	41	10	00	00	3F	82
	写	寄存	寄存器		数量	字节		数	据		CF	RC

响应:

1	2	3	4	5	6	7	8	
01	10	20	03	00	02	BA	08	
		寄存器		寄存器	数量	CRC		

其中 B8~B11 为标称电压设定数据: 41100000 = 9.0, 此时标称电压设定为 9.0V.

读取

1	2	3	4	5	6	7	8
01	03	20	03	00	02	3F	СВ
	读	寄存器		寄存器	数量	CRC	2

响应:

1	2	3	4	5	6	7	8	9
01	03	04	41	10	00	00	EF	CA
01	03	字节		单精度	CRC	-16		

10.2.5 电池标称容量态寄存器【2005】

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	20	05	00	02	04	3D	СС	CC	CD	73	F6
	写	寄存器		寄存器	数量	字节		数据	747		CF	RC

1	2	3	4	5	6	7	8	
01	10	20	05	00	02	5A	09	
		寄存器		寄存器	数量	CRC		

其中 B8~B11 为标称容量设定数据: 3DCCCCCD = 0.1,此时仪器标称容量设定为 0.1AH.

读取

1	2	3	4	5	6	7	8
01	03	20	05	00	02	DF	CA
	读	寄存器		寄存器	数量	CF	RC

响应:

1	2	3	4	5	6	7	8	9
01	03	04	3D	СС	СС	CD	A3	35
01	03	字节		单精度	CRC	-16		

10.2.6 电池充电电压寄存器【2007】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	20	07	00	02	04	41	10	00	00	3E	71
	呁	寄存	器	寄存器	数量	字节		数据	5		CF	RC

响应:

1	2	3	4	5	6	7	8	
01	10	20	07	00	02	FB	C9	
		寄存器		寄存器	数量	CRC		

其中 B8~B11 为充电电压数据: 41100000 = 9.0,此时仪器充电电压设定为 9.0V.

读取

1	2	3	4	5	6	7	8
01	03	20	07	00	02	7E	0A
	读	寄存器		寄存器	数量	CF	RC

响应:

1	2	3	4	5	6	7	8	9
01	03	04	41	10	00	00	EF	CA
01	03	字节		单精度	CRC	-16		

10.2.7 电池充电电流寄存器【2009】

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	20	09	00	02	04	3F	00	00	00	A6	10
	写	寄存	器	寄存器	数量	字节		数	据		CF	RC

1	2	3	4	5	6	7	8
01	10	20	09	00	02	9A	0A
		寄存器		寄存器	数量	CF	RC

其中 B8~B11 为充电电流设定数据: 3F000000 = 0.5,此时仪器充电电流设定为 0.5A.

读取

1	2	3	4	5	6	7	8	
01	03	20	09	00	02	1F	С9	
	读	寄存器		寄存器	数量	CRC		

响应:

1	2	3	4	5	6	7	8	9
01	03	04	3F	00	00	00	F6	27
01	03	字节		单精度	CRC-16			

10.2.8 电池放电电流寄存器【200B】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	20	0B	00	02	04	3F	00	00	00	27	С9
	写	寄存	器	寄存器	数量	字节		数	据		CF	RC

响应:

1	2	3	4	5	6	7	8
01	10	20	0B	00	02	3B	CA
		寄存器		寄存器	数量	CF	RC

其中 B8~B11 为放电电流设定数据: 3F000000 = 0.5,此时仪器放电电流设定为 0.5A.

读取

1	2	3	4	5	6	7	8	
01	03	20	0B	00	02	BE	09	
	读	寄存器		寄存器	数量	CRC		

响应:

1	2	3	4	5	6	7	8	9
01	03	04	3F	00	00	00	F6	27
01	03	字节		单精度	CRC	-16		

10.2.9 电池截止电压寄存器【200D】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	20	0D	00	02	04	41	00	00	00	BF	СВ
	写	寄存	器	寄存器	寄存器数量 字节			数	据		CF	RC

响应:

1	2	3	4	5	6	7	8
01	10	20	0D	00	02	DB	СВ

寄存器 寄存器数量 CRC	
---------------	--

9 **0F**

CRC-16

其中 B8~B11 为截止电压设定数据: 41000000 = 8.0,此时仪器截止电压设定为 8.0V.

读取

1	2	3	4	5	6	7	8	
01	03	20	0D	00	02	5E	08	
	读	寄存	器	寄存器	数量	CF	RC	
响应:								
1	2	3		4	5	6	7	8
01	03	04		41	00	00	00	EE

10.2.10 电池容量预放电寄存器【2010】

字节

03

写入

01

1	2	3	4	5	6	7	8	9	10	11
01	10	20	10	00	01	02	00	01	44	C2
	写	寄存	器	寄存器	寄存器数量		数	丟	CR	С

单精度浮点数

响应:

1	2	3	4	5	6	7	8
01	10	20	10	00	01	0B	СС
		寄存	器	寄存器	数量	CRC	
				001 1			

其中 B8~B9 为预放电数据: 0001 = 1,此时仪器预放电设置为打开.

读取

1	2	3	4	5	6	7	8
01	03	20	10	00	01	8E	0F
	读	寄存	器	寄存器	数量	CRC	

响应:

1	2	3	4	5	6	7
01	03	02	00 01		79	84
01	03	字节	数据		CRC-	16

10.2.11 电池容量循环次数寄存器【2011】

写入

1	2	3	4	5	6	7	8	9	10	11
01	10	20	11	00	01	02	00	01	45	13
	写	寄存	器	寄存器数量		字节	数	居	CR	С

响应:

1	2	3	4	5	6	7	8	
01	10	20	11	00	01	5A	0C	
		寄存器		寄存器	数量	CRC		

其中 B8~B9 为循环次数数据: 0001 = 1,此时仪器循环次数为 1 次.

读取								
1	2	3	4	5	6	7	8	
01	03	20	11	00	01	DF	CF	
	读	寄存	器	寄存器	数量	CRC	2	
响应:								
1	2	3		4	5	6	7	
01	03	02	2	00	01	79	84	
01	03 字节		5	数	居	CRC-16		

10.2.12 电池容量测试结果寄存器【2012】

读取

1	2	3	4	5	6	7	8	
01	03	20	12	00	02	6F	CE	
	读	寄存器		寄存器	数量	CRC		

响应:

1	2	3	4	5	6	7	8	9
01	03	04	3D	СС	СС	CD	A3	35
01	03	字节		单精度	CRC	-16		

其中 B4~B7 为测试的电池容量数据: 3DCCCCCD = 0.1,容量值为 0.1AH

10.3 电压内阻测试寄存器

10.3.1 电阻量程方式寄存器【2100】

写入

1	2	3	4	5	6	7	8	9	10	11
01	10	21	00	00	01	02	00	00	97	52
	町	寄存	器	寄存器数量		字节	数	王 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	CR	С

响应:

1	2	3	4	5	6	7	8
01	10	21	00	00	01	0B	F5
		寄存	器	寄存器数量		CRC	2

其中 B8~B9 为电阻量程方式数据: 0000 = 0,此时电阻量程方式为自动

读取

	2	3	4	5	6	7	8	
01	03	21	00	00	01	8E	36	
	读	寄存	器	寄存器	数量	C	RC	

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	字节	数据		CI	RC-16

10.3.2 电阻量程号寄存器【2101】

写入

1	2	3	4	5	6	7	8	9	10	11
01	10	21	01	00	01	02	00	00	97	52
	写	寄存	器	寄存器	数量	字节	数排	居	CR	С
临応・										

响应:

1	2	3	4	5	6	7	8
01	10	21	00	00	01	0B	F5
		寄存	器	寄存器数量		CRC	2

其中 B8~B9 为电阻量程方式数据: 0000 = 0,此时电阻量程方式为自动

读取

1	2	3	4	5	6	7	8
01	03	21	00	00	01	8E	36
	读	寄存	器	寄存器	数量	CRC]

响应:

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	字节	数据		CF	RC-16

10.3.3 电压量程方式寄存器【2102】

写入

1	2	3	4	5	6	7	8	9	10	11
01	10	21	02	00	01	02	00	00	96	B0
	写	寄存	器	寄存器数量		字节	数	居	CR	С

响应:

1	2	3	4	5	6	7	8
01	10	21	02	00	01	AA	35
		寄存	器	寄存器	数量	CRC	2

其中 B8~B9 为电压量程方式数据: 0000 = 0,此时电压量程方式为自动

读取

1	2	3	4	5	6	7	8
01	03	21	02	00	01	2F	F6
	读	寄存	器	寄存器	数量	CRC	2
	响应:						

1 2 3 4 5 6 7 01 02 44 03 00 00 B8 01 03 字节 数据 CRC-16

10.3.4 电压量程号寄存器【2103】

1	2	3	4	5	6	7	8	9	10	11
01	10	21	03	00	01	02	00	00	97	61
	写	寄存	器	寄存器数量		字节	数据		CR	C

1	2	3	4	5	6	7	8
01	10	21	03	00	01	FB	F5
		寄存	器	寄存器	数量	CRC	

其中 B8~B9 为电压量程方式数据: 0000 = 0,此时电压量程方式为自动

读取

1	2	3	4	5	6	7	8	
01	03	21	03	00	01	7E	36	
	读	寄存器		寄存器	数量	CRC		

响应:

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	字节	数据		CF	RC-16

10.3.5 电阻上限寄存器【2104】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	21	04	00	02	04	43	96	00	00	93	A5
	写	寄存	器	寄存器数量		字节	数据				CF	RC

响应:

1	2	3	4	5	6	7	8
01	10	21	04	00	02	0A	35
		寄存器		寄存器	数量	CF	RC

其中 B8~B11 为电阻上限设定数据: 43960000 = 300.0,此时仪器电阻上限设定为 300.0Ω.

读取

1	2	3	4	5	6	7	8	
01	03	21	04	00	02	8F	F6	
	读	寄存器		寄存器	数量	CRC		

响应:

1	2	3	4	5	6	7	8	9
01	03	04	43	96	00	00	0F	9B
01	03	字节		单精度	CRC-	16		

10.3.6 电阻下限寄存器【2106】

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	21	06	00	02	04	3A	83	12	6F	56	68
	写	寄存	器	寄存器数量		字节	数据				CF	RC

1	2	3	4	5	6	7	8	
01	10	21	06	00	02	AB	F5	
		寄存	寄存器		数量	CF	RC	

其中 B8~B11 为电阻下限设定数据: 3A83126F = 0.001,此时仪器电阻下限设定为 1mΩ.

读取

1	2	3	4	5	6	7	8	
01	03	21	06	00	02	2E	36	
	读	寄存器		寄存器	数量	CRC		

响应:

1	2	3	4	5	6	7	8	9
01	03	04	3A	83	12	6F	4B	8F
01	03	字节		单精度	CRC	-16		

10.3.7 电压上限寄存器【2108】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	21	08	00	02	04	41	F0	00	00	72	57
	写	寄存	器	寄存器	数量	字节		数	据		CF	RC

响应:

1	2	3	4	5	6	7	8
01	10	21	08	00	02	CA	36
		寄存	器	寄存器数量		CF	RC

其中 B8~B11 为电压上限设定数据: 40F00000 = 30.0,此时仪器电压上限设定为 30.0V.

读取

1	2	3	4	5	6	7	8	
01	03	21	08	00	02	4F	F5	
	读	寄存器		寄存器	数量	CRC		

响应:

1	2	3	4	5	6	7	8	9
01	03	04	3F	00	00	00	EE	3C
01	03	字节		单精度	CRC-	·16		

10.3.8 电压下限寄存器【210A】

写入

2												
1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	21	0A	00	02	04	3F	80	00	00	EA	7D
	写	寄存	器	寄存器	数量	字节		数据			CRC	
响应:												
1	2	2	4	5	6	7	0					

1 2 5 4 С ю - 7 o 01 10 21 **0A** 00 02 6B F6

寄存器 寄存器数量 CRC

其中 B8~B11 为电压下限设定数据: 3F800000 = 1.0,此时仪器电压下限设定为 1.0V.

读取

1	2	3	4	5	6	7	8	
01	03	21	0A	00	02	EE	35	
	读	寄存	齐器	寄存器	数量	CR	C	
								1

响应:

1	2	3	4	5	6	7	8	9
01	03	04	3F	00	00	00	EE	3C
01	03	字节	单精度浮点数 CRC-1					-16

10.3.9 电阻测试结果寄存器【210C】

读取

1	2	3	4	5	6	7	8
01	03	21	0C	00	02	0E	34
	读	寄存	器	寄存器数量		CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	3C	23	D7	0A	D8	5E
01	03	字节		单精度消	CRC-	-16		

其中 B4~B7 为测试的电阻测试数据: 3C23D70A = 0.01,电阻值为 0.01Ω

10.3.10 电压测试结果寄存器【210E】

读取

1	2	3	4	5	6	7	8	
01	03	21	0E	00	02	AF	F4	
	读	寄存器		寄存器	数量	CRC		

响应:

1	2	3	4	5	6	7	8	9	
01	03	04	41	10	00	00	EF	CA	
01	03	字节		CRC	-16				

其中 B4~B7 为测试的电阻测试数据: 3C23D70A = 0.01,电阻值为 0.01Ω

10.4 直流负载测试寄存器

10.4.1 负载测试状态寄存器【2200】

1	2	3	4	5	6	7	8	9	10	11
01	10	22	00	00	01	02	00	01	65	92
	写	寄存器	数量	寄存	器	字节	数排	居	CR	С

			-	0	1	0
01 10	22	00	00	01	0B	B1
	寄存器		寄存器	数量	CR	С

其中 B8~B9 为测试状态数据: 0001 = 1,此时仪器测试状态为测试中.

读取

1	2	3	4	5	6	7	8
01	03	22	00	00	01	8E	72
	读	寄存器		寄存器	数量	CR	С
ार्च के र							

响应:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
01	03	字节	数排	居	CRC-	-16

10.4.2 负载测试模式寄存器【2201】

写入

1	2	3	4	5	6	7	8	9	10	11
01	10	22	01	00	01	02	00	00	A5	83
	町	寄存器	数量	寄存器		字节	数	舌	CR	С

响应:

1	2	3	4	5	6	7	8
01	10	22	01	00	01	5A	71
		寄存	器	寄存器	数量	CR	С
++		4-+++4	0000	مىللى م		<u>кан</u> наси	

其中 B8~B9 为测试模式: 0000 = 0,此时仪器测试模式为定电压.

读取

1	2	3	4	5	6	7	8
01	03	22	00	00	01	8E	72
	读	寄存器		寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	字节	数排	······ 居······	CRC	-16

10.4.3 电压上限寄存器【2202】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	22	02	00	02	04	41	F0	00	00	E6	D8
	写	寄存	器	寄存器数量		字节		数	据		CF	RC
~~~												

响应:

1	2	3	4	5	6	7	8
01	10	22	02	00	02	EA	70

其中 B8~B11 为电压上限设定数据: 40F00000 = 30.0,此时仪器电压上限设定为 30.0V.

读取

1	2	3	4	5	6	7	8	
01	03	22	02	00	02	6F	B3	
	读	寄存器		寄存器	数量	CR	С	
								1

响应:

11-11-11-1								
1	2	3	4	5	6	7	8	9
01	03	04	41	F0	00	00	EE	3C
01	03	字节		单精度	CRC	-16		

## 10.4.4 电流上限寄存器【2204】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	22	04	00	02	04	41	70	00	00	67	1A
	写	寄存	器	寄存器	数量	字节	数据			CR	C	

响应:

1	2	3	4	5	6	7	8
01	10	22	04	00	02	<b>0</b> A	71
		寄存	器	寄存器数量		CF	RC

其中 B8~B11 为电流上限设定数据: 41700000 = 15.0,此时仪器电流上限设定为 15.0A.

读取

1	2	3	4	5	6	7	8
01	03	22	04	00	02	8F	B2
	读	寄存	器	寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	41	70	00	00	EF	D4
01	03	字节		单精度	CRC	-16		

#### 10.4.5 功率上限寄存器【2206】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	22	06	00	02	04	42	C8	00	00	66	A2
	写	寄存	器	寄存器	数量	字节	数据		CF	RC		

响应:

1	2	3	4	5	6	7	8
01	10	22	06	00	02	AB	B1
		寄存	器	寄存器数量		CF	RC

其中 B8~B11 为功率上限设定数据: 42C80000 = 1000.0,此时仪器功率上限设定为 100.0W.

读	取
~~~	

M N							
1	2	3	4	5	6	7	8
01	03	22	06	00	02	2E	72
	读	寄存	器	寄存器数量		CR	С

1	2	3	4	5	6	7	8	9
01	03	04	42	C8	00	00	6F	B5
01	03	字节		单精度	CRC	-16		

10.4.6 负载设定值寄存器【2208】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	22	08	00	02	04	3F	80	00	00	7F	54
	写	寄存	器	寄存器	数量	量 字节 数据		据		CF	RC	

响应:

1	2	3	4	5	6	7	8
01	10	22	08	00	02	CA	72
		寄存	器	寄存器	数量	CF	RC

负载设定是由当前负载模式决定的,如果当前负载模式为定电流

其中 B8~B11 为负载设定值设定数据: 3F800000 = 1.0,此时仪器负载设定值为 1.0A.

读取

1	2	3	4	5	6	7	8
01	03	22	08	00	02	4F	B1
	读	寄存	器	寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	3F	80	00	00	F7	CF
01	03	字节	单精度浮点数 CRC-16					-16

10.4.7 电压结果寄存器【220A】

读取

1	2	3	4	5	6	7	8
01	03	22	0A	00	02	EE	71
	读	寄存	器	寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	41	F0	00	00	EE	3C
01	03	字节	单精度浮点数 CRC-16					-16

其中 B4~B7 为测试的电压测试数据: 41F00000 = 30.0,电压值为 30V

10.4.8 电流结果寄存器【220C】

-		
5	нv	
乄	чx	

1	2	3	4	5	6	7	8
01	03	22	0C	00	02	0E	70
	读	寄存	器	寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	3F	80	00	00	F7	CF
01	03	字节	单精度浮点数 CRC-16					-16

其中 B4~B7 为测试的电流测试数据: 3F800000 = 1.0,电流值为 1.0A

10.4.9 功率结果寄存器【220E】

读取

1	2	3	4	5	6	7	8
01	03	22	0E	00	02	AF	B0
	读	寄存	器	寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	41	20	00	00	EF	C5
01	03	字节	单精度浮点数 CRC-16					

其中 B4~B7 为测试的功率测试数据: 41200000 = 10.0,功率值为 10W

10.4.10 电阻结果寄存器【2210】

读取

1	2	3	4	5	6	7	8
01	03	22	10	00	02	CF	B6
	读	寄存	器	寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	41	10	00	00	EF	СА
01	03	字节	单精度浮点数					-16

其中 B4~B7 为测试的电阻测试数据: 41F00000 = 9.0Ω , 电阻值为 9Ω

10.5 直流电源测试寄存器

10.5.1 电源测试状态寄存器【2300】

1	2	3	4	5	6	7	8	9	10	11
01	10	23	00	00	01	02	00	01	75	52
	写	寄存器	数量	寄存	器	字节	数排	居	CR	С

1	2	3	4	5	6	7	8	
01	10	23	00	00	01	0A	4D	
		寄存	寄存器		数量	CRC		

其中 B8~B9 为测试状态数据: 0001 = 1,此时仪器测试状态为测试中.

读取

			-				
1	2	3	4	5	6	7	8
01	03	23	00	00	01	8F	8E
	读	寄存	器	寄存器	数量	CR	С
ாற்றை							

响应:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
01	03	字节	数排	居	CRC-	-16

10.5.2 电压输出寄存器【2302】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	23	02	00	02	04	41	10	00	00	EA	BE
	写	寄存	器	寄存器	数量	字节		数	据		CF	RC

响应:

1	2	3	4	5	6	7	8
01	10	23	02	00	02	EB	8C
		寄存	器	寄存器数量		CF	RC

其中 B8~B11 为电压输出设定数据: 41100000 = 9.0,此时仪器电压输出设定为 9.0V.

读取

1	2	3	4	5	6	7	8
01	03	23	02	00	02	6E	4F
	读	寄存	寄存器		数量	CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	41	10	00	00	EF	CA
01	03	字节		单精度	CRC	-16		

10.5.3 电流输出寄存器【2304】

写入

2												
1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	23	04	00	02	04	3F	80	00	00	72	91
	写	寄存	器	寄存器	数量	字节		数	据		CF	RC
响应:												
1	2	3	4	5	6	7	8					

 1
 2
 3
 4
 5
 6
 7
 8

 01
 10
 23
 02
 00
 02
 0B
 8D

寄存器	寄存器数量	CRC
-----	-------	-----

其中 B8~B11 为电流输出设定数据: 3F800000 = 1.0,此时仪器电流输出设定为 1.0A.

读取

1	2	3	4	5	6	7	8
01	03	23	04	00	02	8E	4E
	读	寄存	器	寄存器	数量	CR	С

响应:

1.37								
1	2	3	4	5	6	7	8	9
01	03	04	3F	80	00	00	F7	CF
01	03	字节		单精度	CRC	-16		

10.5.4 电压结果寄存器【2306】

读取

1	2	3	4	5	6	7	8
01	03	23	06	00	02	2F	8E
	读	寄存	器	寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	41	F0	00	00	EE	3C
01	03	字节	单精度浮点数 CRC-16					

其中 B4~B7 为测试的电压测试数据: 41F00000 = 30.0,电压值为 30V

10.5.5 电流结果寄存器【2308】

读取

1	2	3	4	5	6	7	8
01	03	23	08	00	02	4E	4D
	读	寄存	器	寄存器	数量	CR	С

响应:

01 03 04 <mark>3F 80 00 00 F</mark> 7 C	1
	01
01 03 字节 单精度浮点数 CRC-16	01

其中 B4~B7 为测试的电流测试数据: 3F800000 = 1.0,电流值为 1.0A

10.5.6 功率结果寄存器【230A】

读取

~~ ~ ~ ~								
1	2	3	4	5	6	7	8	
01	03	23	0A	00	02	EF	8D	
	读	寄存器		寄存	寄存器数量		RC	
响应:								
1	2	3		4	5	6	7	8
01	03	04		41	20	00	00	EF

9 **C5**

01	03	字节	单精度浮点数	CRC-16

其中 B4~B7 为测试的功率测试数据: 41200000 = 10.0,功率值为 10W

10.5.7 电阻结果寄存器【230C】

读取

~~~~							
1	2	3	4	5	6	7	8
01	03	23	0C	00	02	0F	8C
	读	寄存器		寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	41	10	00	00	EF	CA
01	03	字节	单精度浮点数      CRC-16					

其中 B4~B7 为测试的电阻测试数据: 41F00000 =  $9.0\Omega$ , 电阻值为  $9\Omega$ 

## 10.6 综合测试寄存器

#### 10.6.1 综合测试状态寄存器【2400】

写入

1	2	3	4	5	6	7	8	9	10	11
01	10	24	00	00	01	02	00	01	03	92
	写	寄存器	数量	寄存	器	字节	数	居	CR	С

响应:

1	2	3	4	5	6	7	8
01	10	24	00	00	01	0B	39
		寄存器		寄存器	数量	CR	C
					11 - 1 43.4		1 31 3-01 1

其中 B8~B9 为测试状态数据: 0001 = 1,此时仪器测试状态为测试中.

读取

1	2	3	4	5	6	7	8
01	03	24	00	00	01	8E	FA
	读	寄存器		寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
01	03	字节	数据		CRC-	-16

#### 10.6.2 群组测试文件寄存器【2401】

1	2	3	4	5	6	7	8	9	10	11
01	10	24	01	00	01	02	00	01	02	43
	写	寄存器	数量	寄存	器	字节	数	居	CR	С

1.57-							
1	2	3	4	5	6	7	8
01	10	24	00	00	01	0A	F9
		寄存器		寄存器	数量	CR	С

其中 B8~B9 为文件数据: 0001 = 1,此时仪器群组测试组号为组 2.

读取

1	2	3	4	5	6	7	8
01	03	24	01	00	01	DF	3A
	读	寄存	器	寄存器	数量	CR	С
ministry.							

响应:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
01	03	字节	数据		CRC-	-16

#### 10.6.3 群组测试电池类型寄存器【2402】

写入

1	2	3	4	5	6	7	8	9	10	11
01	10	24	02	00	01	02	00	00	C3	B0
	町	寄存器	数量	寄存	器	字节	数	舌	CR	С

响应:

1	2	3	4	5	6	7	8			
01	10	24	02	00	01	AA	F9			
		寄存	器	寄存器	数量	CR	C			

其中 B8~B9 为电池类型数据: 0000 = 0,此时仪器群组电池类型为锂电池

读取

1	2	3	4	5	6	7	8
01	03	24	02	00	01	2F	3A
	读	寄存	器	寄存器数量		CR	С
-4->-							

响应:

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	字节	数排	 居	CRC	-16

#### 10.6.4 标称电压值寄存器【2404】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	04	00	02	04	41	10	00	00	4C	A4
	写	寄存	器	寄存器	数量	字节		数	据		CF	RC

响应:

1	2	3	4	5	6	7	8
01	10	24	04	00	02	0A	F9

	]
--	---

其中 B8~B11 为标称电压设定数据: 41100000 = 9.0,此时仪器标称电压设定为 9.0V.

读取

1	2	3	4	5	6	7	8
01	03	24	04	00	02	8F	3A
	读	寄存	器	寄存器	数量	CR	С

响应:

1 37								
1	2	3	4	5	6	7	8	9
01	03	04	41	10	00	00	EF	CA
01	03	字节	单精度浮点数 CRC-16					

## 10.6.5 标称容量值寄存器【2408】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	08	00	02	04	3F	80	00	00	54	F4
	写	寄存	器	寄存器	数量	字节		数据			CF	RC

响应:

1	2	3	4	5	6	7	8
01	10	24	08	00	02	CA	FA
		寄存	器	寄存器	数量	CF	RC

其中 B8~B11 为标称容量设定数据: 3F800000 = 1.0,此时仪器标称容量设定为 1.0AH.

读取

1	2	3	4	5	6	7	8
01	03	24	08	00	02	4F	39
	读	寄存	器	寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	3F	80	00	00	F7	CF
01	03	字节		单精度	CRC	-16		

## 10.6.6 群组测试模式寄存器【240A】

写入

1	2	3	4	5	6	7	8	9	10	11
01	10	24	0A	00	01	02	00	00	C2	F8
	写	寄存器	数量	寄存器		字节	数据		CR	С

响应:

1	2	3	4	5	6	7	8	
01	10	24	0A	00	01	2B	3B	
		寄存器		寄存器	数量	CRC		

其中 B8~B9 为群组测试模式数据: 0000 = 0,此时仪器群组测试模式为连续

读取							
1	2	3	4	5	6	7	8
01	03	24	0A	00	01	AE	F8
	读	寄存	器	寄存器	数量	CI	RC
响应:							
1	2	3	4		5	6	7
01	03	02	00	) (	00	B8	44
01	03	字节		数据		CRC-16	

#### 10.6.7 群组测试总步数寄存器【240B】

写入

1	2	3	4	5	6	7	8	9	10	11
01	10	24	0B	00	01	02	00	09	03	2F
	写	寄存器	数量	寄存器		字节	数据		CR	С

响应:

1	2	3	4	5	6	7	8		
01	10	24	0B	00	01	7A	FB		
		寄存器		寄存器	数量	CRC			

其中 B8~B9 为测试总步数数据: 0009 = 9,此时仪器群组测试总步数为 9

读取

1	2	3	4	5	6	7	8
01	03	24	0B	00	01	FF	38
	读	寄存	器	寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7
01	03	02	00	09	78	42
01	03	字节	数据		CRC	-16

#### 10.6.8 群组测试当前步数寄存器【240C】

写入

1	2	3	4	5	6	7	8	9	10	11
01	10	24	0C	00	01	02	00	00	C2	9E
	写	寄存器	数量	寄存器		字节	数据		CRC	

响应:

1	2	3	4	5	6	7	8				
01	10	24	0C	00	01	СВ	3A				
		寄存器		寄存器	数量	CRC					

其中 B8~B9 为当前步数数据: 0000 = 0,此时仪器群组当前步数为第1步

读取

1	2	3	4	5	6	7	8
01	03	24	0C	00	01	4E	F9

#### 92 AT5800 用户手册

	读	寄存器	계	存器数量	C	RC
响应:						
1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	字节	数	r据	CRC	-16

#### 10.6.9 充电电压值寄存器【2410】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	10	00	02	04	41	10	00	00	4C	5B
	写	寄存	器	寄存器	数量	字节		数	据		CF	RC

响应:

1	2	3	4	5	6	7	8
01	10	24	10	00	02	4A	FD
		寄存	器	寄存器	数量	CF	RC

其中 B8~B11 为充电电压设定数据: 41100000 = 9.0,此时仪器充电电压设定为 9.0V.

读取

1	2	3	4	5	6	7	8
01	03	24	10	00	02	CF	3E
	读	寄存器		寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	41	10	00	00	EF	CA
01	03	字节		单精度	CRC	-16		

#### 10.6.10 启动电流值寄存器【2412】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	12	00	02	04	3D	СС	СС	CD	81	7D
	写	寄存	器	寄存器数量		字节	数据				CR	RC

响应:

1	2	3	4	5	6	7	8
01	10	24	12	00	02	EB	3D
		寄存	器	寄存器数量		CF	RC

其中 B8~B11 为启动电流设定数据: 3DCCCCCD = 0.1,此时仪器启动电流设定为 0.1A.

读取

								_	
1	2	3	4	5	6	7	8		
01	03	24	12	00	02	6E	FE		
	读	寄存	器	寄存	器数量	C	RC		
响应:									
1	2	3		4	5	6	7	8	9

01	03	04	3D	СС	СС	CD	A3	35
01	03	字节		单精度	CRC	-16		

#### 10.6.11 截止电流值寄存器【2414】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	14	00	02	04	3F	80	00	00	55	AD
	写	寄存	器	寄存器数量		字节	数据				CR	C
-												

响应:

1	2	3	4	5	6	7	8	
01	10	24	14	00	02	0B	3C	
		寄存器		寄存器	数量	CRC		

其中 B8~B11 为截止电流设定数据: 41100000 = 9.0,此时仪器截止电流设定为 1.0A.

读取

1	2	3	4	5	6	7	8
01	03	24	14	00	02	8E	FF
	读	寄存器		寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	3F	80	00	00	F7	CF
01	03	字节		单精度	CRC-	-16		

#### 10.6.12 步进电流值寄存器【2416】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	16	00	02	04	3D	СС	CC	CD	80	8E
	写	寄存	器	寄存器数量		字节	数据				CF	RC

响应:

1	2	3	4	5	6	7	8
01	10	24	16	00	02	AA	FC
		寄存器		寄存器	数量	CF	RC

其中 B8~B11 为步进电流设定数据: 3DCCCCCD = 0.1,此时仪器步进电流设定为 0.1A.

读取

1	2	3	4	5	6	7	8
01	03	24	16	00	02	2F	3F
	读	寄存器		寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	3D	СС	СС	CD	A3	35
01	03	字节		单精度	CRC	-16		

#### 10.6.13 群组测试时间寄存器【2418】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	18	00	02	04	40	A0	00	00	4D	E6
	写	寄存	器	寄存器	寄存器数量			数	居		CR	RC
响応・												

响应:

···								
1	2	3	4	5	6	7	8	
01	10	24	18	00	02	СВ	3F	
		寄存	器	寄存器	数量	CF	RC	

其中 B8~B11 为测试时间设定数据: 40A00000 = 5.0,此时仪器测试时间设定为 5.0S.

读取

1	2	3	4	5	6	7	8
01	03	24	18	00	02	4E	FC
	读	寄存器		寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	40	A0	00	00	EF	D1
01	03	字节		单精度	CRC	-16		

#### 10.6.14 电压上限值寄存器【241A】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	1A	00	02	04	41	F0	00	00	CD	D2
	写	寄存	器	寄存器数量		字节	数据				CR	C

响应:

1	2	3	4	5	6	7	8
01	10	24	1A	00	02	6A	FF
		寄存	器	寄存器数量		CF	RC

其中 B8~B11 为电压上限设定数据: 41F00000 = 30.0,此时仪器电压上限设定为 30.0V.

读取

1	2	3	4	5	6	7	8
01	03	24	1A	00	02	EF	3C
	读	寄存	器	寄存器数量		CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	41	FO	00	00	EE	3C
01	03	字节		单精度	CRC	·16		

### 10.6.15 电压下限值寄存器【241C】

Modbus(RTU)指令集 95

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	1C	00	02	04	3D	СС	СС	CD	00	F1
	写	寄存	器	寄存器数量		字节	数据				CF	RC

响应:

1	2	3	4	5	6	7	8
01	10	24	1C	00	02	8A	FE
		寄存器		寄存器	数量	CF	RC

其中 B8~B11 为电压下限设定数据: 3DCCCCCD = 0.1,此时仪器电压下限设定为 0.1V.

读取

1	2	3	4	5	6	7	8	
01	03	24	1C	00	02	0F	3D	
	读	寄存器		寄存器	数量	CRC		

响应:

1	2	3	4	5	6	7	8	9
01	03	04	3D	СС	CC	CD	A3	35
01	03	字节		单精度	CRC	-16		

### 10.6.16 电流上限值寄存器【241E】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	1E	00	02	04	41	70	00	00	CD	С9
	写	寄存	器	寄存器	寄存器数量		数据				CR	C

响应:

1	2	3	4	5	6	7	8
01	10	24	1E	00	02	2B	3E
		寄存	器	寄存器	数量	CF	RC

其中 B8~B11 为电流上限设定数据: 41700000 = 15.0,此时仪器电流上限设定为 15.0A.

读取

1	2	3	4	5	6	7	8
01	03	24	1E	00	02	AE	FD
	读	寄存器		寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	41	70	00	00	EF	D4
01	03	字节		单精度	CRC	-16		

#### 10.6.17 电流下限值寄存器【2420】

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	20	00	02	04	3D	CC	СС	CD	03	B0
	写	寄存	器	寄存器数量		字节	数据				CF	C

1	2	3	4	5	6	7	8	
01	10	24	20	00	02	4A	F2	
		寄存	器	寄存器	数量	CF	RC	

其中 B8~B11 为电流下限设定数据: 3DCCCCCD = 0.1,此时仪器电流下限设定为 0.1A.

读取

1	2	3	4	5	6	7	8	
01	03	24	20	00	02	CF	31	
	读	寄存器		寄存器	数量	CRC		

响应:

1	2	3	4	5	6	7	8	9
01	03	04	3D	СС	СС	CD	A3	35
01	03	字节		单精度	CRC-	-16		

#### 10.6.18 电阻上限值寄存器【2422】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	22	00	02	04	43	96	00	00	2E	C7
	写	寄存	器	寄存器数量		字节	数据				CF	RC

响应:

1	2	3	4	5	6	7	8	
01	10	24	22	00	02	EB	32	
		寄存	器	寄存器	数量	CRC		

其中 B8~B11 为电阻上限设定数据: 43960000 = 300.0,此时仪器电阻上限设定为 300.0Ω.

读取

1	2	3	4	5	6	7	8	
01	03	24	22	00	02	6E	F1	
	读	寄存器		寄存器	数量	CRC		

响应:

1	2	3	4	5	6	7	8	9
01	03	04	43	96	00	00	OF	9B
01	03	字节		单精度	CRC	-16		

## 10.6.19 电祖下限值寄存器【2424】

2												
1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	24	00	02	04	3A	83	12	6F	EA	F9
	写	寄存	器	寄存器	数量	字节	数据			CRC		
响应:												
1	2	3	4	5	6	7	8					
01	10	24	24	00	02	0B	33					

	寄存器	寄存器数量	CRC
--	-----	-------	-----

其中 B8~B11 为电阻下限设定数据: 3A83126F = 0.001,此时仪器电阻下限设定为 1mΩ.

读取

1	2	3	4	5	6	7	8	
01	03	24	24	00	02	8E	F0	
	读	寄存	器	寄存器	数量	CR	С	
								1

响应:

1 37								
1	2	3	4	5	6	7	8	9
01	03	04	3A	83	12	6F	4B	8F
01	03	字节		单精度	CRC	-16		

#### 10.6.20 时间上限值寄存器【2426】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	26	00	02	04	44	79	F9	9A	DD	8E
	写	寄存	器	寄存器	数量	」 字节		数		CR	C	
- 4 - >-												

响应:

1	2	3	4	5	6	7	8
01	10	24	26	00	02	AA	F3
		寄存	路	寄存器	数量	CF	RC

其中 B8~B11 为时间上限设定数据: 4479F99A = 999.9,此时仪器时间上限设定为 999.9S.

读取

1	2	3	4	5	6	7	8
01	03	24	26	00	02	2F	30
	读	寄存	器	寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	44	79	F9	9A	FD	21
01	03	字节	单精度浮点数 CRC-16					-16

#### 10.6.21 时间下限值寄存器【2428】

写入

1	2	3	4	5	6	7	8	9	10	11	12	13
01	10	24	28	00	02	04	3D	СС	СС	CD	02	16
	写	寄存	器	寄存器	数量	字节		数	居		CF	RC

响应:

1	2	3	4	5	6	7	8
01	10	24	28	00	02	СВ	30
		寄存	器	寄存器	数量	CF	RC

其中 B8~B11 为时间下限设定数据: 3DCCCCCD = 0.1,此时仪器时间下限设定为 0.1S.

1	2	3	4	5	6	7	8
01	03	24	28	00	02	4E	F3
	读	寄存	器	寄存器	数量	CR	С

1	2	3	4	5	6	7	8	9
01	03	04	3D	CC	СС	CD	A3	35
01	03	字节	单精度浮点数 CRC-16					-16

#### 10.6.22 电压量程方式寄存器【242A】

写入

1	2	3	4	5	6	7	8	9	10	11
01	10	24	2A	00	01	02	00	00	С5	98
	写	寄存	器	寄存器	数量	字节	数排	居	CR	С

响应:

1	2	3	4	5	6	7	8
01	10	24	2A	00	01	2A	F1
		寄存	器	寄存器	数量	CRC	

其中 B8~B9 为电压量程方式数据: 0000 = 0,此时电压量程方式为自动

读取

1	2	3	4	5	6	7	8
01	03	24	2A	00	01	AF	32
	读	寄存	器	寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	字节	数排	居	CI	RC-16

#### 10.6.23 电压量程号寄存器【242B】

写入

1	2	3	4	5	6	7	8	9	10	11
01	10	24	2B	00	01	02	00	00	C4	49
	写	寄存	器	寄存器	数量	字节	数排	居	CR	С

响应:

1	2	3	4	5	6	7	8
01	10	24	2B	00	01	7B	31
		寄存	器	寄存器数量		CRC	2

其中 B8~B9 为电压量程号数据: 0000 = 0,此时电压量程号为 0

读取

1	2	3	4	5	6	7	8

01	03	24	2B	00	0	1	FE		F2	
	读	寄存器		寄存器数量				CRC		
响应:	应:									
1	2	3	4	5		6			7	
01	03	02	00	00		B8		4	14	
01	03	字节		数据			CF	RC-16	5	

## 10.6.24 电阻量程方式寄存器【242C】

写入

1	2	3	4	5	6	7	8	9	10	11
01	10	24	2C	00	01	02	00	00	C5	FE
	写	寄存	器	寄存器数量		字节	数	居	CR	С

响应:

1	2	3	4	5	6	7	8
01	10	24	2C	00	01	CA	F0
		寄存	器	寄存器	数量	CRC	2

其中 B8~B9 为电阻量程方式数据: 0000 = 0,此时电阻量程方式为自动

读取

1	2	3	4	5	6	7	8
01	03	24	2C	00	01	4F	33
	读	寄存	器	寄存器	数量	CR	С
响应:							

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	字节	数据		CF	RC-16

#### 10.6.25 电阻量程号寄存器【242D】

写入

1	2	3	4	5	6	7	8	9	10	11
01	10	24	2D	00	01	02	00	00	C4	2F
	写	寄存	器	寄存器数量		字节	数	居	CR	С

响应:

1	2	3	4	5	6	7	8	
01	10	24	2D	00	01	9B	30	
		寄存	器	寄存器数量		CRC	5	

其中 B8~B9 为电阻量程号数据: 0000 = 0, 此时电阻量程号为 0

读取

		-					
1	2	3	4	5	6	7	8
01	03	24	2D	00	01	1E	F3
	读	寄存器		寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7
01	03	02	00	00	B8	44
01	03	字节	数据		CI	RC-16

#### 10.6.26 群组测试功能寄存器【242E】

写入

1	2	3	4	5	6	7	8	9	10	11
01	10	24	2E	00	01	02	00	01	EE	E4
	写	寄存	器	寄存器	数量	字节	数排	舌	CR	С

响应:

1	2	3	4	5	6	7	8
01	10	24	2E	00	01	6B	30
		寄存	器	寄存器	数量	CRC	2

其中 B8~B9 为群组测试功能数据: 0001 = 1,此时当前步测试功能为电池激活

读取

1	2	3	4	5	6	7	8
01	03	24	2E	00	01	EE	F3
	读	寄存	<b>齐</b> 器	寄存器	数量	CR	С
nd d.							

响应:

1	2	3	4	5	6	7
01	03	02	00	01	79	84
01	03	字节	数	居	CF	RC-16

### 10.6.27 电压结果寄存器【2430】

读取

1	2	3	4	5	6	7	8
01	03	24	30	00	02	CE	F4
	读	寄存器		寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	41	F0	00	00	EE	3C
01	03	字节	单精度浮点数 CRC-16					

9

CF

其中 B4~B7 为测试的电压测试数据: 41F00000 = 30.0,电压值为 30V

## 10.6.28 电流结果寄存器【2432】

读取

1	2	3	4	5	6	7	8	
01	03	24	32	00	02	6F	34	
	读	寄存	器	寄存	器数量	C	RC	
响应:								_
1	2	3		4	5	6	7	8
01	03	04		3F	80	00	00	F7

01	03	字节	单精度浮点数	CRC-16

其中 B4~B7 为测试的电流测试数据: 3F800000 = 1.0,电流值为 1.0A

## 10.6.29 电阻结果寄存器【2434】

读取

1	2	3	4	5	6	7	8
01	03	24	34	00	02	8F	35
	读	寄存器		寄存器	数量	CR	С

响应:

1	2	3	4	5	6	7	8	9
01	03	04	41	20	00	00	EF	C5
01	03	字节	单精度浮点数 CRC-16				-16	
01	03	字节	单精度浮点数 CRC-16				-16	

其中 B4~B7 为当前测试步骤的电阻测试数据: 41200000 = 10.0,功率值为 10Ω

#### 10.6.30 时间结果寄存器【2436】

读取									
1	2	3	4	5	6	7	8		
01	03	24	36	00	02	2E	F5		
	读	寄存	器	寄存	器数量	C	RC		
响应:								_	
1	2	3		4	5	6	7	8	9
01	03	04		3F	00	00	00	F6	27
01	03	字节	5		单精度	浮点数		CRC	-16

其中 B4~B7 为当前步骤测试的时间测试数据: 3F000000 = 0.5,时间值为 0.5S

## 11. 处理机 (Handler) 接口



本章您将了解到以下内容:

- HANDLER(PLC)接口
- 报警灯接口

## 11.1HANDLER(PLC)接口

本系列测试仪配置有一个 25PIN 的 D 型连接端子,提供 PLC 遥控输入输出控制信号(可与 PLC 控制器链接), 如图所示。这些连接端子和标准的 25PIN 的 D 型连接头互相匹配,须由使用者自备。为了能达到最佳的效果,建议 使用屏蔽线作为控制和输出信息的连接线。为了不使屏蔽线连成一个回路而影响屏蔽效果,只能将屏蔽线一端的屏蔽 网接地。

图 9-1



#### 表 9-1 PLC 口各引脚定义

输入/输出	引脚	名称	说明
	14	СОМ	提供启动和停止的 0V 信号
	14	公共低端	
(二日)(金))	1	START	当 START 与 COM 短接时,启动仪器测量
16亏荆八	I	启动信号	
	2	STOP	当 STOP 与 COM 短接时,仪器停止测量
	2	复位(停止)信号	
	10	TEST1	仪器测量过程中,TEST1 与 TEST2 短路;
	22	TEST2	测试完成,TEST1 与 TEST2 开路;
信 <del>号</del> 输出	11	PASS1	测试合格时,PASS1 与 PASS2 短路
	23	PASS2	
	12	FAIL1	测试不合格时,FAIL1 与 FAIL2 短路

24	FAIL2	



输入信号均使用开关量输入(如 PLC),绝对不能接任何其他的电压或电流源,如果输入其他的电源,会造成仪器内部控制电路的损坏或误动作。



本章您将了解到以下内容:

- 技术指标
  - 一般规格
  - ▶ 外形尺寸

#### 11.1 技术指标

下列数据在以下条件下测得:

- 温度条件: 23℃±5℃
- 湿度条件: ≤65% R.H.
- 零值调整:测试前短路清零
- 预热时间: >60 分钟
- 校准时间:12个月

测试电流准确度: 10% 测试电流频率准确度: 1kHz(1±20Hz),5ppm

#### 11.1 一般规格

屏幕:	TFT-LCD 真彩显示,带触摸屏,荧屏尺寸 5 英寸		
校准:	短路全量程清零		
测试段:	四端测试法		
数据记录:	USB 存储器		
讯响:	关、合格、不合格		
触发:	内部、外部(手动和远程)触发		
接口:	处理机 (Handler) 接口		
	RS232 接口		
编程语言:	SCPI 和 Modbus(RTU)		
辅助功能:	键盘锁		

#### 11.2 环境要求

测量环境:	指标:温度 18℃~28℃	湿度<65%RH	
	操作:温度 10℃~40℃	湿度 10~80%RH	
	存储:温度 0℃~50℃	湿度 10~90%RH	
电源:	200VAC~240VAC		
保险丝:	250V 1A 慢熔		
功率:	最大 120VA		
重量:	约5公斤		

# 11.3 外形尺寸

(示意图)



Applent Instruments

-AT5800 用户手册-简体中文版 ©2005-2020 版权所有:常州安柏精密仪器有限公司 Applent Instruments Ltd..