版本 V1.00 Copyright © 2016-03-15 北京博电新力电气股份有限公司 版权所有。 本手册中的产品信息、说明以及所有技术数据均不具有合同约束力。 北京博电公司保留对产品技术数据进行修改而不另行通知的权利。 产品与本手册不符之处,以实际产品为准。 北京博电公司对于本手册中可能发生的错误不承担责任。 未经北京博电公司书面许可,不得全部或部分拷贝、重印该手册。

2 PMUT600D 智能变电站同步相量测量装置测试仪技术手册

注意事项

本手册目的是让使用者熟悉 PMUT600D 智能变电站同步相量测量装置测试仪的使用,并指导在各种不同应用领域中如何正确使用。

本手册涵盖有关如何安全、正确和有效使用测试仪的重要信息,帮助用户避免一些危险情况, 减少维修费用和故障时间,同时也有助于提高测试仪的可靠性和使用寿命。

本手册应该在测试仪使用现场备用,所有使用测试仪的人员均应阅读本手册。

- 1. 装置供电电源为 AC 220V, 6A, 50Hz; 请勿将直流电压或 AC 380V 接入到电源输入端。
- 装置使用以太网双绞信号线连接计算机与装置进行通讯;联机工作时应保证信号线可靠连接, 注意不要随意拉扯信号线或晃动信号线连接端。
- 3. 装置配套的联机软件运行在 Windows 操作系统下。
- 装置使用完毕后应放入外包装箱内存放。清洁箱体时,应将供电电源断开,将电源插头拔下, 再用清洁剂或湿布小心擦拭。

<u> 会</u>全使用

安全规程

在操作测试仪前,请详细阅读以下安全规程:

● 不推荐在不理解本手册内容时使用测试仪,只能由接受过相关培训的人员操作

使用规则

● 只允许在符合技术条件的情况下使用。使用应符合工作现场和应用的安全规则。注意用

4 PMUT600D 智能变电站同步相量测量装置测试仪技术手册

户手册和软件文档中提供的信息

- 只能在"设计用途"中指定的领域中应用
- 未经允许禁止打开测试仪机箱和前后面板

安全操作流程

- 测试仪必须使用带有保护接地的电源插座
- 禁止将前面板的任何连接插头连到保护地
- 禁止向插口或者通风槽中插入物体
- 不要将测试仪置于潮湿或有结露的环境中运行
- 不要将测试仪置于有易燃气体和水蒸汽的环境中运行

更换电源保险

- 拔出装置电源线
- 用平头改锥轻轻撬开装置背板电源插座上方抽屉样式的保险护盖
- 取出旧保险,更换新保险,保险型号为1A/250V
- 扣好保险护盖

清洁

 在不带电状态下,可使用软布蘸少量水清洁测试仪外表面,清洁时应避免将水流进测试 仪内部。

录

注	意事项		
安	全使用		
目	录		6
1.	产品	概述	
	1.1.	产品功能和特点	
	1.2.	系统配置	9
	1.3.	面板说明	9
2.	技术	参数	
	2.1.	交流稳态输出	
	2.2.	交流动态输出	
	2.3.	键相脉冲输出 (KP+、KP-)	错误!未定义书签。
	2.4.	开关量	错误!未定义书签。
	2.5.	GPS 时间同步输入	错误!未定义书签。
	2.6.	故障保护	错误!未定义书签。
	2.7.	环境条件与影响量	.错误!未定义书签。

2.8.	安全性能	错误!未定义书签。
2.9.	外壳与防护	
2.10.	通讯接口	错误!未定义书签。
2.11.	模拟 WAMS 主站同 PMU 装置数据交互功能	
2.12.	机械参数	错误!未定义书签。
3. PN	MU 测试软件	
3.1.	主界面	
3.2.	基本输出	
3.3.	交流调制输出	
3.4.	频率斜坡输出	
3.5.	谐波和间谐波输出	
3.6.	规约通信	
附录A	装置可能出现的异常现象	
附录 B	选配件-PGPS04 卫星同步装置	

1. 产品概述

1.1. 产品功能和特点

PMUT600D 电力系统同步相量测量系统试验装置是一款实用新型便携式检测装置。PMU(同步相量测量装置)是同步相量测量系统(WAMS)的关键部分,PMU的性能好坏与否直接影响WAMS系统的整体性能。

PMUT600D 电力系统同步想量测量系统试验装置由标准信号源(测试仪主机)、GPS 卫星接 收设备和 PMU 测试系统软件构成,以下简称 PMU 测试仪。PMU 测试仪输出与 GPS 时钟同步的、 可变的三相交流电压电流信号和开关量信号等,用于测试 PMU 设备的稳态和动态性能。GPS 卫星 接收设备为 PMU 测试仪提供同步时钟信号,PMU 测试系统软件联机控制 PMU 测试仪输出测试信 号,并模拟 WAMS 主站同 PMU 装置通讯获取实时同步相量测量数据。

PMU 测试仪的功能满足《GB/T 26862-2011 电力系统同步相量测量装置检测规范》、《DL/T 280-2012 电力系统同步想量测量装置通用技术条件》及《Q/GDW 416-2010 电力系统同步相量测量装置(PMU)测试技术规范》对 PMU 功能测试的要求。

PMU 测试仪的功能测试项目包括:

(1) 可输出 IEC61850-9-2 规范的数字式电压、电流信号。信号频率、幅值、相角可调。信号的相角设置符合同步相量角度定义。

(2) 三相交流信号的频率、幅值、相角可实现阶跃变化, 跃变时刻与 PPS 同步。

(3) 在三相交流基波信号上可叠加2至13次谐波分量,或10~150Hz间谐波。

(4) 三相交流电压信号可进行幅值调制、频率调制、相角调制,以及幅值、相角同步调制。

(5) 三相交流信号频率可进行线性渐变,每周期变化次数不小于500次。

(6) 可控制 4 路开关量输出,监视 4 路开关量输入,也可收发 Goose 信息,监视 Goose 信息 状态。

(7) WAMS 主站模拟软件可实时获取 PMU 上送相量数据,最大获取速度 100 帧/秒。通讯规 约符合《GB/T 26865.2 电力系统实时动态监测系统 第 2 部分:数据传输协议》。

PMU 测试仪为 PMU 的稳态性能和动态性能测试提供了有效、可靠、全面、快速、方便且规范化、标准化的测试手段。

1.2. 系统配置

•	测试主机	一台
•	便携式计算机	一台
•	专用测试线和线包	一套
•	网络交换机	一台
•	网线	三根
•	产品技术手册	一册
•	软件安装光盘	一个
•	包装箱	一个

1.3. 面板说明

前面板

图 1-1 PMUT600D 前面板

图 1-2 PMUT600D 后面板

编号	名称	功能	
		8 对光以太网通	光纤插座 :左边 TX(发送),右边 RX(接收)
		讯接口用于传输	SPD 指示灯:装置上电后,若光纤通信接口初始
1	1、2、、8	IEC61850-9-1/	化正常,Link 灯点亮
		2 报文、GOOSE	Rx/Tx 指示灯 : 当有数据交换时, 指示灯点亮 (Rx
		报文、1588 报文	为接收,Tx 为发送)
2	ETHERNET	以太网通讯接口	
3	TEST	测试仪厂家使用调	试接口

表 1-1 PMUT600D 前后面板端子功能定义表

	TV1 TV0		8 路 FT3 格式的光纤通讯接口, 输出 FT3 格式的采
(4)	1X1、、1X8	F13 制出	样值报文,当有数据交换时,旁 Tx 指示灯闪烁
	DY		1 路 FT3 格式的光纤通讯接口,接收 FT3 格式的采
(5)	KX	F13 输入	样值报文,当有数据交换时,旁 Rx 指示灯闪烁
			接收 IRIG-B 光 B 码同步时钟信号
6	IKIG-B KX	B妈接收	当接收到对时信号后,旁 Rx 指示灯闪烁
		GPS 脉冲同步	GPS LOCK:当接收到的 GPS 信号有效时,灯点亮
7	GPS ANT	信号外接天线	PPM:每分钟闪烁一次
		接口, 内置 GPS	PPS:每秒钟闪烁一次
8	LL OUTPUT	12路弱信号模拟	量输出,当有模拟量输出时,Tx 指示灯闪烁
		上方为:电源开	¥
9	电源 AC220V	中间为:抽屉样式	式的保险护盖,内置一工作保险、一备用保险
		下方为:电源插图	垒
10	开关量输入	8 路开关量输入	
	开关量输出	8 路开关量输出	

2. 技术参数

2.1. 供电电源

主电源	
额定电压	220V (AC)
允许范围	100V ~ 240V (AC)
额定频率	50Hz
允许频率	40 ~ 60Hz
电流	1A(max)

2.2. 以太网通讯接口

电以太网通讯口:	用于与上位 PC 机通讯
型号	10/100Base-TX (10/100Mbit、双绞线、自动交叉)
端口数量	1个
接口类型	RJ45
电缆型号	5 类双绞线
	LED 绿(点亮):有效连接
1人心打日小	LED 黄(闪烁):有数据交换

光纤通讯接口 :月	光纤通讯接口 :用于 IEC61850-9-2、GOOSE 通讯	
型号	100Base-FX (100Mbit、光纤、全双工)	
端口数量	8 对	
接口类型	LC	
波长	1310nm	
传输距离	>1km	
	Link(点亮):有效连接	
	Rx 或 Tx(闪烁): 有数据交换	

FT3 接口:用于 IEC60044-7/8 的 FT3 通讯	
采用标准	IEC60044-7/8
端口数量	10 个 (8 个输出口, 2 个输入口)
接口类型	ST
波长	850nm
传输距离	>1km
状态指示	HD (点亮):有效连接

2.3. 弱信号模拟量输出

信号幅值		
输出通道	12 路	
设置范围	AC: 0~7.07Vrms(有效值) DC: 0~10V	
Max. 输出电流	1mA	
分选中	0.10~7.00Vrms:误差<0.2%	
/庄朔皮	0.02~0.10Vrms:误差<1%	
分辨率	250μV	
失真率(THD%)	<0.1%	
频率		
正弦信号	10~250Hz	
暂态信号	DC ~ 10.0kHz	
公路府	误差 1mHz (10HZ-65HZ)	
/ 任 朔 皮	误差 10mHz (65HZ-250HZ)	
分辨率	0.001Hz	
相位		
相角范围	0 到 359. 9°	
准确度	<0.1°, 50/60Hz	

分辨率	±0.01°
-----	--------

2.4. 开关量

8 对开关量输入 (A-H)					
开入特性	30V~250V (DC)或空接点(自动识别)				
采样频率	10kHz				
时间分辨率	100µs				
最大测量时间	1.50×10⁵ s				
计中语关	±1ms (0.001s ~ 1s)				
山町医左	$\pm 0.1\%$ (1s ~ 1.50×10 ⁵ s)				
防抖动时间设置范围(软件设置)	0ms ~ 25ms				
电气隔离	8 对开入电气隔离				
门槛阻抗参数(空接点)	5kΩ13kΩ				

4 对开关量输出(1-4)				
类型	空接点不分极性(软件控制)			
交流容量	Vmax: 250V (AC) /Imax: 0.5A			
直流容量	Vmax: 250V (DC) /Imax: 0.5A			
4 对开关量输出(5-8)				

类型	快速接点输出,响应速度为 100us			
交流容量	Vmax: 220V (AC) /Imax: 0.5A			
直流容量	Vmax: 220V (DC) /lmax: 0.5A			

2.5. 同步接口

仪器可提供以下两种方式的同步接口:

- GPS 同步接口:内置 GPS
- 光 B 码接口:接口类型 ST,连接光纤 62.5/125µm(多模光纤)ST-ST
- IEEE1588 对时功能:接口类型 LC,前面板 8 对光以太网通讯接口

2.6. 机械参数

尺寸和重量			
重量	6.85kg		
长×宽×高	326mm×360mm×155mm		

2.7. 绝缘

绝缘电阻	
测试环境	室温、湿度小于 75%
供电电源对地(机箱金属外壳)	1000V 摇表测试,绝缘应不小于 300MΩ
开关量对地 (机箱金属外壳)	500V 摇表测试,绝缘应不小于 50MΩ

各对开关量接点间	500V 摇表测试,绝缘应不小于 50MΩ				
绝缘强度					
测试环境	室温、湿度小于 75%				
供电电源对地(机箱金属外壳)	能承受 1.5kV 工频电压,并保持 1min,				
	装置不应出现击穿或飞弧现象				
开关量对地(机箱金属外壳)	能承受 1kV 工频电压,并保持 1min,装				
	置不应出现击穿或飞弧现象				

2.8. 振动和冲击

动态	
	测试依据 IEC68-2-6 (操作模式)
振动	频率范围 10150Hz,加速度连续 2g(20m/s),10 周波/
	轴
冲击	测试依据 IEC68-2-27(操作模式)15g/11ms,半波正弦

2.9. 电磁兼容(EMC)

EMC	
静电放电干扰	Ⅱ级:接触放电 4kV,空气放电 4kV
电磁场辐射干扰	Ⅱ级:场强 3V/m
1M 脉冲群干扰	Ⅱ级:共模 1kV,差模 0.5kV

2.10. 运行环境

气候	
操作温度	-5 到+45℃
存储和运输	-20 到+70℃
湿度	5 到 90%相对湿度,不结露

2.11. 交流动态输出

2.11.1. 交流电压源阶跃突变

- 2.11.1.1. 最大突变量: ±50%额定电压;
- 2.11.1.2. 突变过渡过程时间: ≤200us。

2.11.2. 交流电流源阶跃突变

- 2.11.2.1. 最大突变量: ±50%额定电流;
- 2.11.2.2. 突变过渡过程时间: ≤200us。

2.11.3. 频率阶跃突变

- 2.11.3.1. 最大突变量: ±5Hz;
- 2.11.3.2. 突变过渡过程时间: ≤200us。

2.11.4. 相角阶跃突变

- 2.11.4.1. 最大突变量: ±180°;
- 2.11.4.2. 突变过渡过程时间: ≤200us。

2.11.5. 幅值调制

- 2.11.5.1. 交流电压幅值最大调制量 20%; 调制频率: 0.1~5Hz;
- 2.11.5.2. 调制变化为均匀、连续变化,每周波渐变次数不小于 500 次;

2.11.6. 频率调制

- 2.11.6.1. 交流电压频率最大调制量 0.5Hz; 调制周期: 0.5~10s;
- 2.11.6.2. 调制变化为均匀、连续变化,每周波渐变次数不小于 500 次;

2.11.7. 相角调制

- 2.11.7.1. 交流电压相角最大调制量 0.1rad; 调制频率: 0.1~5Hz;
- 2.11.7.2. 调制变化为均匀、连续变化,每周波渐变次数不小于 500次;

2.11.8. 幅值、相角同步调制

- 2.11.8.1. 交流电压幅值最大调制量 20%; 交流电压相角最大调制量 0.1rad; 调制频率: 0.1~5Hz;幅值、相角调制参数同频、反相;
- 2.11.8.2. 调制变化为均匀、连续变化,每周波渐变次数不小于 500次;

2.11.9. 频率斜坡

2.11.9.1. 频率变化率最大量: ±5Hz/s;

2.11.9.2. 频率变化为均匀、连续变化,每周波渐变次数不小于500次;

2.12. 模拟 WAMS 主站同 PMU 装置数据交互功能

2.12.1. 技术规范:

GB/T 26862-2011 电力系统同步相量测量装置检测规范 DL/T 280-2012 电力系统同步想量测量装置通用技术条件 Q/GDW 416-2010 电力系统同步相量测量装置(PMU)测试技术规范 Q/GDW 316-2006 电力系统实时动态监测系统技术规范

- 2.12.2. 通讯协议: GB/T 26865.2 电力系统动态监测系统 第2部分: 数据传输协议。
- 2.12.3. 基本功能: 模拟 WAMS 主站同 PMU 装置数据交互和记录功能。

3. PMU 测试软件

3.1. 主界面

测试软件主界面包含输出菜单、试验控制工具栏、输出参数设置、输出矢量图、PMU 上传实 时数据窗口等部分。

试验控制工具栏上的功能键依次为:开始输出、停止输出、实时趋势图、额定参数设置、新建 PMU 子站、PMU 通讯设置、PMU 点表映射。

输出参数设置包括:基本输出、交流调制输出、频率斜坡输出、键相脉冲输出、谐波输出、 带外影响等。

实时数据窗口显示从 PMU 实时获取的相量、模拟量、数字量数据。

PED测试()	文控制软件									= 🗆 X
主义件(0)	- 編編 (e) - 視歴	(*) 若助(8)								
	11 🔽 🎗	0 💊 🖸 🖉	ļ							
工本提出	「「「「「「」」(一)」(「」)」(一)」(一)」(一)」(一)」(一)」(一)」(一)」(一)」(一)」(H部间 \						8	電量示	Ф
분기	≤输出								Ja : 57.735V / 0.00° lb : 57.735V / -120.00°	Id : 1.0000A / 0.00° Th : 1.0000A / -120.00
	幅值	相位	順本	nē·直	相位	频率			le : 57.735V / 120.000	
U1	57.735	7 0.00°	50.000Hz [1	1.0000Λ	0.00°	50.000Hz			a farmer and the second	
U2	57.735V	7 -120.00°	50.000Hz [2	1.0000A	-120.00°	50.000Hz				
U3	57.735	7 120.00°	50.000Hz I3	1.0000A	120.00°	50.000Hz				
	电	平 占空比	相位 相偏	补偿				=	±180	-ta -Ua D
键型	lluki冲 0	000.0 V000	0.00°	0.00°					6	X S. F. F.
一变化	k曾设者——				输出————				A DECEMBER OF	_X / Y
受化	二相电	「戸 🔽 「「「「」「「」」 「「」」 「「」 「」 「」 「」 「」 「」 「」 「」	v (†							
UF 12		10.00037		5	□1 □2 □	4			Jab : 100.000V	
がい	-	10.000V SEM	¥					u	Jbc:100.000V -	0
+++24	er) p. 44			भारत के बा	4			- u	Jca : 100.000V	
2.0	이 사람 나라.	10.0%TTs	and the second s	7544-847				P	3:173.205W	
	◎ 小白村日10	10 (Marine)	调积效率 0.1	1112	频率变化率	0.10Hz/s		P	F3 : 1.000	
□便	能	0 Irod	्यास् वितंत्र 0.50	1. 便能					23 : 0.000var	
rtradable 40		0.11.00	(0) FUSUE					N	()) 叁本编述大型图	
	CHARTER OF A FLICH	5000-0 H		nanta /E	m (# 14 = 24)	A#27 (0 k 7 € /2 k)	NEW CAR	174 HE (1)		9
1	144134.1%76748	00737/8-05042-045	57 T35V	11/04418	·項目1+	0.00	INJIECH C.	(5)+ h= /-)		
2	R	007%//B-05042-UEV	57. T35V			-120.00				
	'B T1	007298-05742-077	57 T35V			120 00				
5	IZ	003XWB-05C42-IEV	L. C000A			-120.00				
C	D	007%WD 05042 DOV	L. COODA			120 DC				
	相量(視測量	一致宁量								
就鳞										CAT WIN SCRL;

图 3-1 测试软件主界面

3.2. 基本输出

在基本输出栏中,可直接设置三相电压电流幅值、相角和频率输出值,或通过变化量设置按 变化量和变化步长调整输出。其中,交流三相电压、电流同频。装置的输出起点由输出开始、装 置初始化完成后的下一个 GPS 秒脉冲同步触发。在输出过程中改变参数设置,由下一个 GPS 秒脉 冲触发输出变化。

在开关量输出栏中,可以设置四路开关量输出状态。

图 3-2 基本输出设置

3.3. 交流调制输出

在交流调制输出栏中,勾选使能复选框,可在基本输出的载波信号上叠加调制波信号。选择 幅相调制单选钮,可叠加调制量和调制频率为设置值的调幅或调相信号,**调幅和调相信号可同时** 叠加;选择频率调制单选钮,可叠加调制量和调制周期为设置值的调频信号。

图 3-3 交流调制输出设置

3.4. 频率斜坡输出

在频率斜坡输出栏中,勾选使能复选框,可输出从当前频率以设定的频率变化率(df/dt),变 化至终止频率并稳定的频率斜坡信号。

─频率斜坡−			
☑値能	频率变化率	0.10Hz/s	
	终止频率	55.00Hz	
困っ	4 바도 났고 스키		

图 3-4 频率斜坡输出设置

3.5. 谐波和间谐波输出

在谐波输出分页中,勾选谐波输出使能复选框,可以在基本输出的基波信号上叠加2至13次 谐波。设置基波幅值、相角和频率,选择谐波次数,设置谐波分量的幅值和相角,则输出对应的 谐波信号。

☑ 谐波轴	俞出使能	谐波次数 2	*				
「基波一	幅值	相位	频率		幅值	相位	频率
U1	57.735V	0.00°	50.000Hz	Ι1	1.0000A	0.00°	50.000Hz
U2	57.735V	-120.00°	50.000Hz	Ι2	1.0000A	-120.00°	50.000Hz
U3	57.735V	120.00°	50.000Hz	IЗ	1.0000A	120.00°	50.000Hz
┌谐波分	量						
	幅值	相位			幅值	相位	
U1	0.000V	0.00°		I1	A0000.0	0.00°	
U2	0.000V	-120.00°		Ι2	0.0000A	-120.00°	
U3	0.000V	120.00°		IЗ	0.0000A	120.00°	

图 3-6 谐波输出设置

在带外影响输出分页中,勾选带外输出使能复选框,可以在基本输出的基波信号上叠加任意频率的间谐波信号,频率范围为 10~150Hz。设置基波幅值、相角和频率,设置间谐波分量的幅值、相角和频率,则输出对应的间谐波信号。

U3 57.735V 120.00° I3 1.0000A 120.00° 带外分量 幅值 相位 频率 幅值 相位 U1 0.000V 0.00° 100.000Hz I1 0.0000A 0.00° U2 0.000V -120.00° I2 0.0000A -120.00° U3 0.000V 120.00° I3 0.0000A 120.00°	~基波 — U1 U2	幅值 57.735V 57.735V	相位 0.00° -120.00°	频率 50.000Hz	I1 I2	幅值 1.0000A 1.0000A	相位 0.00° -120.00°
備值 相位 频率 幅值 相位 U1 0.000V 0.00° 100.000Hz I1 0.0000A 0.00° U2 0.000V -120.00° I2 0.0000A -120.00° U3 0.000V 120.00° I3 0.0000A 120.00°	U3	57.735V	120.00°		I3	1.0000A	120.00°
幅值 相位 频率 幅值 相位 U1 0.000V 0.00° 100.000Hz I1 0.000A 0.00° U2 0.000V -120.00° I2 0.000A -120.00° U3 0.000V 120.00° I3 0.000A 120.00°	┌帯外分!	星					
U1 0.000V 0.00° 100.000Hz I1 0.000A 0.00° U2 0.000V -120.00° I2 0.0000A -120.00° U3 0.000V 120.00° I3 0.0000A 120.00°		幅值	相位	频率		幅值	相位
U2 0.000V -120.00° I2 0.0000A -120.00° U3 0.000V 120.00° I3 0.0000A 120.00°	U1	0.000V	0.00°	100.000Hz	I1	0.0000A	0.00°
U3 0.000V 120.00° I3 0.0000A 120.00°	U2	0.000V	-120.00°		I2	0.0000A	-120.00°
	U3	0.000V	120.00°		13	0.0000A	120.00°

☑ 带外输出使能

图 3-7 带外影响输出设置

3.6. 规约通信

3.6.1. 建立连接

设置本机 IP 地址与子站 IP 地址在一个网段,检查是否可以 ping 通;填写子站标识符、实时数据端口号及命令管理端口号,确保无误后,点击连接按钮,则可以建立与 PMU 子站的连接。

新建PIII子站		X
本机IP地址	192 . 168 . 33 . 21	
子站IP地址	192 . 168 . 33 . 38	Ping
子站标识符	HeB0BZb1	(只取前8个字符)
实时数据端口	8000	
命令/管理端口	8001	
离线数据端口	7000	
规约版本号	2	
保存参数		连接 取消

图 3-8 与 PMU 建立连接

3.6.2. 点表映射

进行点表映射前需要完成通信配置,将左边列表中 PMU 的数据拖到右侧列表,并设置对应标 准名称。

<u>n</u>				
配置	测试仪点	表		
名称	序号	标准名称	映射名称	
	1	U1	OZHA-海雨J线-IAV	Τ
	2	U2	OZHA-海雨J线-IBV	
	3	U3	0ZHA-海雨J线-ICV	
	4	I1	OZHA-海雨J线-UAV	
	5	I2	OZHA-海雨J线-UBV	
	6	13	0ZHA-海南J线-UCV	
	ntopending and a second secon	·配置 名称 名称 5 6 	宿置 測试仪点表 名称 序号 标准名称 1 U1 2 U2 3 U3 4 I1 5 I2 6 I3 4 11 5 I2 6 I3 4 11 5 I2 6 I3	福置 名称 序号 标准名称 映射名称 2400 月・日 U1 02HA:海南1线:IAV 2 U2 02HA:海南1线:IAV 3 U3 02HA:海南1线:ICV 4 I11 02HA:海南1线:UBV 5 I2 02HA:海南1线:UBV 6 I3 02HA:海南1线:UCV 1 1 1 1 1 1 1 1 1 1 02HA:海南1线:UCV 1

图 3-9 点表映射

3.6.3. 查看实时数据

建立点表映射后,可以在实时数据窗口中查看向量、模拟量及数字量的实时数据。

实时数据							👻 🕂
序号	测试仪相量	PMU相量	测试仪幅值	PMU幅值	幅值误差(%)	测试仪相角(゜)	PMU相角(゜)
1	V1	OZHA-海雨J线-IAV	57.735V			0.00	
2	V2	OZHA-海雨J线-IBV	57.735V			-120.00	
3	V3	OZHA-海雨J线-ICV	57.735V			120.00	
4	I1	OZHA-海雨J线-UAV	1.0000A			0.00	
5	I2	OZHA-海雨J线-UBV	1.0000A			-120.00	
6	I3	OZHA-海雨J线-UCV	1.0000A			120.00	
N							7
H 4 + +	← \相量 / 模拟:	量_<数字量_<					

图 3-10 查看 PMU 实时数据

3.6.4. 查看实时趋势图

建立点表映射后,点击工具栏上的实时趋势按钮,打开实时趋势图,可以查看 30 秒的频率实 时趋势、电压向量实时趋势及电流向量实时趋势。

图 3-11 查看 PMU 实时趋势图

附录A IEC61850 配置

通过该配置界面,能实现对SV、GOOSE报文的订阅以及发布的手动或自动配置。

System & IEC-61850				>
_ ❷ 系统参数设置				
-		第四组 🕤 第五组 🕤) 第六组 📀 第·	七组 🕤 🕛
- IEC60044-7/8报文	HELD. HELSOIT HIE MEHHESSIG	通道 名称	脾財 高位	4位 人
→	MAC目标地址 0x 010ccd040002		20000	0000
□ ● 約11日 万制工	MAC源地址 Ox FFFFFFFFFFFFF	2 保护中方	To 0000	0000
→ Goose写两	Sampled Value ID w 3501WI/LINO	3 保护电流	Ta 0000	0000
000362240	(SVID) ME SOUTHOF LENG. 9	4 保护电流	Th 0000	0000
	APPID 0x 4002	5 保护电流	Ib 0000	0000
	VLAN ID Ox 000	6 保护电流	Ic 0000	0000
	VI AN Dui anitar 4	● 7 保护电流	Ic 0000	0000
	VLAN FITOTICY 4	🔵 8 中性点零	3I0 0000	0000
	采样延时 3000 g uS	9 中性点零	3I0 0000	0000
	通道数月 21	🔵 10 中性点间	(4)3I0 0000	0000
(1)		● 11 中性点间	310 0000	0000
	[1] 2/] 1, 4 Je [1] 2 (L002 ♥	● 12 保护电压	Ua 0000	0000
	輸出口选择 1□ ▼	● 13 保护电压	Ua 0000	0000
		● 14 保护电压	UP 0000	0000
	● 目定义 ◎ IEC61850-9-2LE	15 保护电压	0000	0000
	>	● 16 保护电压	Uc 0000	0000
	映射华祖电源到 /	17 保护电压	Uc 0000	0000
	映射本组电压到 ▼>	18 同期电压	Uz 0000	0000 -
	设置		OPTIONAL	
	采样室 80 ASDU 1	ര	Refreshtime	False -
			Dateset	False 👻
	报文格式 IEC61850-9-2LE ▼ 🥅 不含	;品质位 比例因子	Samplerate	False -
导入SCL 导入配置	确认 取消 应用	6		

图 A-1 IEC 配置界面

- ① 配置切换区:用于选择打开所需的试验配置界面;
- ② 控制块切换区:用于切换所需设置的 SV/GOOSE 控制块,并显示相应间隔的描述信息;
- ③ 报文参数设置区:对当前的 SV/GOOSE 报文信息进行设置,以及报文输出光口的选择;
- ④ 通道设置区:对当前的 SV/GOOSE 报文信息的通道进行映射;
- ⑤ 公共参数配置区: 放置多组报文的共同配置参数, 配置修改后所有组报文均统一修改;
- ⑥ 界面功能区:有 SCD 文件或者许继 XML 文件的情况下可对报文信息进行自动配置,并将所有 配置信息保存。

SMV 配置

IEC61850-9-2 协议配置

点击 SMV 中的"IEC61850-9-2 报文"即进入 9-2 报文的设置界面,如图 A-1。

	♦ IEC61850-9-2报文							
● JEC61850-9-1报文	😜 第一组 😜 第二	组 😜 第三组 😜	第四组	🕤 第五组 🕞	第六组	6 第	七组 😜	P
	■ IED: #L1101高压侧	合并终端						
● IEC60044-7/8振又 ▲ 至焦器給出		0104040001	通道	名称	映射	高位	低位	
▲ 弱信是輸出	MAC 目标地址 Ux	01000000001	• 1	额定证	采	0000	0000	
Gooseili	MAC源地址 Ox	FFFFFFFFFFF	2	保护电流	Ia	0000	0000	
	Sampled Value ID	ML1101MU/LLNO.:	3	保护电流	Ia	0000	0000	
	(24TD)	4001	• 4	保护电流	Ib	0000	0000	
	APPID Ox	4001	95	保护电流	Ib	0000	0000	
	VLAN ID Ox	000	6	保护电流	Ic	0000	0000	
	WIAN Priority	4	97	保护电流	Ic	0000	0000	
	at the start of	050	8	中性点零	310	0000	0000	
	米科迦时	250 uS	9	中性点零	310	0000	0000	
	通道数目	21	• 10	中性点间	310	0000	0000	
	同步方式	本地同步(Loc₂ ▼	• 11	中性点间	310	0000	0000	
	1397534	400110 (2000)	12	保护电压	Ua	0000	0000	
	输出口选择	111 -	13	保护电压	Ua	0000	0000	
	◎ 白奈ツ ◎	TEC61950_0_21 E	14	保护电压	UD	0000	0000	
	U BEX	1EC01000-9-2LE	15	保护电压	UD	0000	0000	
	脾射 末组由 流到	>	10	保护电压	UC II-	0000	0000	
			18	同期由日	II-	0000	0000	
	映射本组电压到	>	10	同期中正	II.e	0000	0000	
	设置				OPTIONA	L		
	采样率 80	ASDU 1			Refresh	ntime	False	
					Dateset		False	-
	报文格式 IEC61850-	-9-2LE - 0不含:	品质位	比例因子	Samples	rate	E-las	-
	报文格式 IEC61850-	-9-2LE 👻 🗐 不含。	品质位 [比例因子	Sampler	rate	False	

图 A-1 IEC61850-9-2 报文设置界面

采样率、ASDU 数目、SVID、APPID、MAC 目标地址的设置应与保护相同。

同步方式:一般选择为"采样值已同步"。

比例因子: 1Bit 所代表的电压、电流值。一般电压默认为 0.01, 电流默认为 0.001。

注:如有不同的比例因子可分别应用于四组比例因子中,分别对应 "Ua…lc"、"Ua`…la`"、

"Usa...lsa"、"Uta...lta"

采样延时:用于设置通道固有延时。

通道数目:每一帧报文中包含的采样通道的数目。对于IEC61850-9-2协议,通道数目是可设

的,其值应与被测保护装置的通道数目相同。

低位

VLAN ID、VLAN Priority:虚拟局域网标示与优先级,当测试连接交换机时需设置。

报文格式:可选择 IEC61850-9-2、IEC61850-9-2LE 两种报文输出格式。

不含品质位: 勾选后, 测试仪所输出的 9-2 报文中不包含 4 个字节的品质位。

高位,低位:即为"品质因数",点击相应通道的低品质位,即弹出一个下拉的框"《编辑》品质图数",

点击后进入品质因数细化界面如图 A-2,设置完毕确定后,即自动设置好相应通 道的品质因数,填到该通道的低位上,并支持在相应通道的低位处直接输入值。 品质因数默认值为 0000 0000(正常运行)。

效性(bit0-bit1))00:好(good))01:无效(invalid)	抖动(bit5) ④ 0:无抖动 ◎ 1:有抖动	源(bit10) ◎ 0:过程 ◎ 1:祓取代
〕10:保留(reserved) 〕11:可疑(questionable)	故障(bit6) ◎ 0:无故障 ◎ 1:有故障	测试(bit11)
拙(bit2) ⑨ 0:无溢出 ⑨ 1:溢出	老数据(bit7) ◎ 0:无超时 ◎ 1:数据超时	操作员闭锁(bit12) ④ 0:不闭锁 ① 1:闭锁
3值域(bit3) ④ 0:正常 ① 1:超值域	不一致(bit8) ◎ 0:一致 ◎ 1:不一致	
「基准值(bit4) ● 0:正常 ◯ 1:坏基准值	不精确(bit9) ◎ 0:精确 ◎ 1:不精确	🗌 更改全部通道

A-2 品质细化

IEC60044-7/8 协议配置

点击 SMV 中的"IEC60044-7/8 报文"即进入 FT3 报文的设置界面,如图 A-3。

· 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	♦ IEC60044-7/8指	l文							
IEC61850-9-1报文	● 第一组 ● 1	第二组 🕤 第三组 ()第	四组(🕽 第五组	🕤 第六组	● 第	七组 🕤	4
IEC61850-9-2报文 IEC60044-7/8报文	MAC目标地	0x 010ccd040082		通道	名称		映射	类型	*
采集器输出	WAC語報由	Ox FFFFFFFFFFFF		1			Ia	保护	
弱信号输出	NEIG SK NG NE	0. 4100	514	2			Ia	保护	
e订阅	APPID	0X 4100		3			Ib	保护	
伸	LDName	0x 0031		4			Ib	保护	
	DataSetName	0x 01		5			Ic	保护	E
	VLAN TO	0	511	6			Ic	保护	
		0x 000		7			Ia	测重	
	VLAN	4		8			1b T	则里	
	状态字1	0x 0000		9			1c	则里	
	状态字2	0. 0000	51	11			Ua	电压	
	the share is and	10	- 1	12			Uc	由正	
	観定町址	10 1	.S	13			3110	电压	
	通道数目	22		14			310	保护	
	采样值报文			15			Uz	电压	-
	● 标准	◎ 自定义	Я	R样值 输)出 光口	11 👻			
	采样室 80		SCP	463		保护察	行定电流	5.0000	
	ASDII教目 1		SCM	11585		委应家	5中中 3	5,0000	
			SV	11585		その名	相由正	0.5774	
		郑 测萍盖衣	样家	4kHz		1/(10*1.	732)kV2	的单位	
		100 001 000 111 010	1+++	Ellips		报文格式	INF	T3格式	
		32	行平	ombps	•		1 22		

图 A-3 60044-7/8 (FT3) 设置界面

FT3 采样值配置需配置被测保护装置采样率、波特率, 该值应与被测保护装置值相同。

报文格式: 根据被测保护装置的报文格式,选择合适的FT3报文格式, "国网格式"即为"可扩展

60044-7/8" 输出。

LDName:逻辑设备名,该值应与被测保护装置的设置相同。

LNName:逻辑节点名,该值应与被测保护装置的设置相同。

DataSetName: 该值应与被测保护装置的设置相同, 默认值为0xFE。

额定相电流: 设置额定相电流为1A或5A, 该值应与被测保护装置的设置相同。

额定中线电流: 设置额定中线电流为1A或5A, 该值应与被测保护装置的设置相同。

额定相电压:额定相电压默认值为57.735V。

额定延时:设置互感器的额定延时。

状态字: 设置 SMV 的状态字 1 及状态字 2, 点击 "状态字 1" 旁 ... 弹出 "状态字定义" 对话框,

(见图 A-4 所示) 根据被测保护装置的设置值,可对状态字1及状态字2的每一位进行

设置。设置完毕后,点击"确定"。

注: FT3为光串口输出, 默认第一组到第六/八组的采样值报文分别为测试仪FT3发送的TX1、

TX2、TX3到TX6/8物理通道输。

大态字定)	¥.						x
一状态主	1						
BitO	0:	良好	•	Bit8	0:	有效	•
Bit1	0:	接通(正常运行)	•	Bit9	0:	有效	•
Bit2	0:	接通(正常运行),	•	Bit10	0:	有效	•
Bit3	0:	数据集不采用插值);	•	Bit11	0:	有效	•
Bit4	0:	样本同步	•	Bit12	0:	i(t)	•
Bit5	0:	有效	•	Bit13	0:	比例因子SCP = 01C	-
Bit6	0:	有效	•	Bit14	0:	良好	-
Bit7	0:	有效	•	Bit15	0:	良好	-
1+**							
1/030-7 Bit0	0:	有效	•	Bit8	0:	有效	•
Bit1	0:	有效	•	Bit9	0:	有效	•
Bit2	0:	有效	•	Bit10	0:	有效	•
Bit3	0:	有效	•	Bit11	0:	有效	•
Bit4	0:	有效	•	Bit12	0:	有效	•
Bit5	0:	有效	•	Bit13	0:	有效	•
Bit6	0:	有效	•	Bit14	0:	有效	•
Bit7	0:	有效	•	Bit15	0:	有效	-
		确认		IJ	峭		

A-4 状态字细化定义

GOOSE 配置

GOOSE 配置包括 GOOSE 订阅和 GOOSE 发布,在软件主界面"设置"中点击"系统/IEC 设置"按钮后,弹出图 A-5 所示界面。点击 GOOSE 订阅进入 GOOSE 订阅界面 (见图 A-5 所示)、 点击 GOOSE 发布进入 GOOSE 发布界面 (见图 A-6 所示)的配置。

32 PMUT600D 智能变电站同步相量测量装置测试仪技术手册

参数设置	🖉 Goosei] 🕅					
)-9-1报文	😌 第一组 😌 第二	组 🜔 第三组 ᅌ 第四组	1 🕤 第五组			
·9-2报又 -7/8报文	IED名称	PT1101A变压器保护第-	配置版本(ConfRev)	1		
±	控制快索引 (CoRef)	PT1101API PROT/LLN0\$G	分连生在时间	10000		nS.
1	coogram (C TD)	DT1101ADT DPOT/LIND a		DT11014D	T PROT/IIT	104
	GOOSENNY (GOID)	1 11101ALL_I KOI/LLNO. g) 劉炳県(Dataset)	TITIOIM	L_1 10017 LL1	A04
	应用标示(APPID) Ux[0004	委托(NdsCom)	False		Ψ.
	目标地址(MAC)	01-0c-cd-01-00-04	测试(Test)	False		Ŧ
	序号 描述	数据类型	^ 绑定	行号	列序	位
	③ 1 跳高压侧开;	关1 FALSE	A 🔲	1	1	1
	2 跳高压侧开;	关2 FALSE	E B	3	1	1
	🔵 3 跳中压侧开步	关1 FALSE	🔲 🔲 C	5	1	1
	4 跳中压侧开;	关2 FALSE	添加 🛨 D	7	1	1
	5 跳低压侧1分	专1 FALSE	E E	/	/	1
	6 跳低压侧1分	支2 FALSE	F	/	/	1
	▼ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	支开 FALSE	全部删除 G		/	1
	8 就低压钡2分	支升 FALSE	н	/	/	1
	9 姚闸备用1-1	I FALSE				
	10 姚門宙用1-2	Z FALSE	-			
	I TRI I Dia an		E	(<u>a</u> 28	全緒完	
	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,GOUSEID和APPID小额解表	<i>n</i>		ALC: NO PAR	
	1~5组					
	接收口 1 🔻					

图 A-5 GOOSE 订阅配置界面

● 示玩診察院団 ● SNW				
● IEC61850-9-1报文	😜 G1 😜 G2 😜 G3 😜 G4	😜 G5 😜 G6 😜	G7 🔁 G8	🕞 G9 😜 G10 📑
-	IED名称 III.1101高	压侧合并终 [。] 允许生存	时间 1000	00 nS
● 采集器輸出	控制块索引(GcRef) ML1101RPII	/LLNO\$GO\$e 数据集	ML 1	101RPIT/LLN0\$dsGC
	GOOSE标示(GoTD) ML1101RPIT	/LLNO.goct 费托(Nd	sCom) Fals	
	应用标示(APPTD) 0x 0001	Mit (Te	st) Fals	
		1 00 01 WIAN	0- 000	
		JI-00-01 VLAN	UX 000	0
	配	VLAN P1	iority 4	
	序号 描述	数据类型		A
	● 1 断路器 总断路器位置	[01]		
	2 断路器 总断路器位置	UTCTime		E
	3 闸刀1 闸刀1位置	[01]		添加
	4 闸刀1 闸刀1位置	UTCTime		刪除
	🔵 5 闸刀2 闸刀2位置	[01]		
	🔵 6 🛛 闸刀2 闸刀2位置	UTCTime		王即朝陈
	- 7 闸刀3 闸刀3位置	[01]		
	🔵 8 闸刀3 闸刀3位置	UTCTime		
	9 闸刀4 闸刀4位置	[01]		
	10 闸刀4 闸刀4位置	UTCTime		
	11 接地闸刀1 接地闸刀1	[01]		
	☑ GOOSE发布 发送口 1	•		
	是信件给时间和 2-2	8 <u>一条件下垂</u> 在时间70	5000-5	바이므로 0.
		ゆルホけ P里夜时间10	0000005	на шара из

图 A-6 GOOSE 发布配置界面

GOOSE 订阅

测试仪接收 GOOSE 信号, 必须先订阅 GOOSE, GOOSE 订阅可订阅多个 MAC 地址下的信息。 订阅时,需要配置下列参数:1)控制块索引(GoRef);2)GOOSE 标示(GoID);3)应用 标示(APPID);4)目的地址(MAC),或勾选"对 GoRef、GoID、APPID 不做解析",只配置 "目的地址 (MAC)"以保证测试仪可靠收到 GOOSE 信息。

将 GOOSE 中数据(比如:跳闸信号)绑定到测试仪的"开入量(A-H)",当测试仪接收到GOOSE 信息时,可将该信息状态变化情况反映到测试仪相应的开入上,测试软件根据该开入的状态判断保护动作情况,记录动作时间。

如图 A-5 可以将 GOOSE 中的数据绑定到开入 A~H 上去,对应后面的行号、列序、位都会发生相应的变化,解除绑定即取消目前绑定的数据集。

行号:对应待测试的数据是 Dataset 下的第几个数据,序号是从 1 开始;

列序:对应数据集中有结构体的数据,1代表该结构体中从左边开始的第一个数据,2代表该 结构体中从左边开始的第二个数据;

位: 对应数据集中有双位置或者位串的数据,从右边开始第一个数为第"1"位,例如[1000], 需要对1进行映射时,即对应的位为4。

例: 将左上图数据集中数据序号为1的结构体类型数据中的"[10010]"中从右数的第二个"1" 绑定在了开入量 B 上,我们可以看到右上图开入量框中,开入量 B 的行号为1,与数据集中的数 据序号一致,"列序"为"2"对应着结构体数据中从左数第二个数据"[10010]","位"为"2" 对应着此字符串中从右数第二位"1"所在的位数。

注: 可把 5 组 GOOSE 信息选择测试仪任意光口进行接收订阅。

GOOSE 发布

测试仪不但可以接收 GOOSE 信息,完成保护装置的闭环测试,而且可以模拟其它智能设备 发布 GOOSE 信息。比如若测试保护的重合闸时间,测试仪需要模拟智能操作箱发布断路器位置 的 GOOSE 信号给保护装置以使其满足允许重合的逻辑。

GOOSE 信息在变电站内通过组播方式来传输,变电站的智能设备 (如保护装置) 接收 GOOSE 信息时首先要判断 GOOSE 参数是否和其订阅的参数匹配,GOOSE 参数以及 GOOSE 数据(Data) 的数据结构需要和保护装置的配置完全一致才接收。

GOOSE 参数具体含义如下:

- GOOSE Control Reference (控制块索引 GoRef),可视位串,最大 65 字节
- GOOSE 标示(GoID): The GOOSE Identifier (string), GOOSE 标示,可视位串,最大 65 字节
- 应用标示 (APPID): GOOSE application identifier, 应用标示
- 目的地址 (MAC): 组播地址, 范围 01-0C-CD-01-00-00 到 01-0C-CD-01-01-FF
- 允许生存时间 (Time Allowed to Live): 单位为毫秒
- 数据集 (DatSet): 可视位串, 最大长度为 65 字节
- 委托 (NdsCom): 布尔值
- VLAN ID、VLAN Priority:虚拟局域网标示与优先级,当测试连接交换机时需设置。

- 最短传输时间 T1:事件发生后最短的重发时间间隔,为毫秒级时间,一般默认为 2ms
- 稳定条件下重传时间 T0:稳定条件下(长时间内无事件发生)报文重发时间,一般默认为 5000ms

在 GOOSE 发布时需设置:

- 允许生存时间:GOOSE 报文在传输时,当超过这个时间,如保护装置没有接收到报文,
 则会判 GOOSE 断链,一般默认为 10000ms
- 测试 (Test): GOOSE 报文的检修位,一般默认为 FALSE,需要做检修位测试时设置为 True Goose 发布配置要与保护装置接收的 goose 信息配置完全一致,它包括:控制块索引 (GoRef)、GOOSE 标示 (GoID)、应用标示 (APPID)、目标地址 (MAC)、配置版本 (ConfRev)、 允许生存时间 (time Allowed to live)、数据集 (dataset)、委托 (NdsCom)、测试 (Test), 配置完这些信息后还要配置数据集中具体的数据,数据个数与数据类型也必须一致,以上信息只 要有一项不一致,保护装置将不能正确接收到 goose 信息。

GOOSE 数据 (Data) 的数据类型:

GOOSE 发布数据中可编辑的数据类型有七种(BOOLEAN、Unsigned Integer、UTCTime、 BitString 、Float、双位置遥信、Structure),见表 A-1 所示。

表 A-1 数据类型的表达方式

数据类型	数值表达方式
Boolean	True or False (大小写均可) or Out1 (2, 3, 4)

		若数据值为 Out1 那么该数据就和开	出进行了关联,其值		
		由开出状态控制。			
Unsigne	d				
Integer		2时51位前23(1934:12)			
UTC Tim	ie	UtcTime (大小写均可)			
BitString)	[1、0 组成的位串] (例如:[110000]])		
Float		mm.yy(例如: 1.2)			
	[10]	合位 or Out1(x)_Dbpos	若数据值为 Out		
			(x) _Dbpos 那么		
双位置 遥信	[01]	公位 ar Out1(v) Dhnor	该数据就和开出进		
	[01]		行了关联, 其值由		
			开出状态控制。		
	[11]	故障态			
	[00]	检修态			
Structur	e		e>)		

GOOSE 参数以及 GOOSE Dataset 的数据结构有两种获得途径:

1) 通过保护装置厂家或变电站提供。

2) 通过抓 GOOSE 报文的方式获得。

注: 可把 12 组 GOOSE 配置到测试仪任意口进行发送。

SV、GOOSE 自动配置

IEC 配置除了可以对 SV (9-2、FT3 等) 采样值报文、通道、GOOSE 报文进行手动配置外,

还提供自动方式对报文及通道进行配置:

- (1) 导入模型配置文件 SCD、CID、ICD (系统集成商提供)
- (2) 导入许继 XML 格式的模型配置文件

在 IEC 配置界面中点击 "导入 SCL" 可一次性把配置文件中的 SMV、GOOSE Input、GOOSE Output 信息配置到软件的 SMV, GOOSE 订阅与发布上面。

配置步骤:

1) 首先导入 SCD 文件, 找到所需间隔信息。

TED =:	54		直找	拴制块:	列表								
. ML	1101 끊	馬压側台	并终端	序号	AppID	Src	MAC	控制块所	f在IED	控制	制块所在AP	控制块所	i在数据集描过
I III	35014 10014	山田別台	并珍瑞 并依端	0	4001	010	ccd040001	ML1101-	高压侧合并	终端 M1		合并单元	龙送数据集
PT	11014	守住男(平均第一套	1	4002	010	ccd040002	ML3501-	中压侧合并结	終端 Ⅱ 1		合并单元	发送数据集
Ti	GOOSE	Inputs	~ D / D =	2	4003	010	ccd040003	ML1001-	一低压侧合并	终端 G1	G 1		
	SMV In	outs											
	GOOSE (Outputs	5	-									
🕀 PT	1101B	变压器(保护第二套	-									
PL	11011	10KV品。 101.V回:	出线路保护 建保拉	•			111						•
. The		I OK Y Mg :	06 IA D -	内部に	N描述		外部LN描述		内部DO描述		外部DO描	述	内部DU描述
				807 3	+纤通道	STAT			米纤q通道研	Ret	额完延证	·····································	米纤q通道
				高压例	は相由活	200413	保护由流A	89-2	高圧側ia	EH 0	保护电流	A相1	高圧側ia
				高压倒	LA相电.济	ž	保护电流At	89-2	启动板高压	Plia	保护电流	A相2	启动板高F
				高压侧	IB相电流	5	保护电流B相	目9-2	高压侧ib		保护电流	B相1	高压侧ib
				高压钢	旧相电流	5	保护电流B相	目9-2	启动板高压(Ŋib	保护电流	B相2	启动板高E
				高压钢	IC 相电流	i.	保护电流C相	目9-2	高压侧ic		保护电流	C相1	高压侧ic
				高压侧	IC相电流	5	保护电流C相	目9-2	启动板高压(Nic	保护电流	iC相2	启动板高E
				高压倒	零序电	流	中性点零序	电流9-2	高压侧零序3	BiO	中性点零	序电流1	高压侧零月
				高压钢	零席电	流	中性点零序	电流9-2	启动板高压的	则零序3i0	中性点零	序电流2	启动板高E
已选控	制块			高压侧	间隙零	序	中性点间隙	电流9-2	高压侧间隙3	BiO	中性点间	隙电流1	高压侧间隙
序号	AppID	Type	所在IED	高压钢	间隙零	序	中性点间隙	电流9-2	启动板高压(则间隙3iO	中性点间	隙电流2	启动板高E
0	4001	SMV	ML1	高压侧	NA相电 B	5	保护电压At	目9-2	高压側ua		保护电压	A相1	高压侧ua
				高压钢	IA相电 日	2	保护电压At	目9-2	启动板高压(Nua	保护电压	A相2	启动板高E
				高压钢	IB相电日	2	保护电压B相	目9-2	高压倒ub		保护电压	B相1	高压侧ub
1			•	<	10.10.40.0		III III	~ ~~		nd s	in lash r		ALL DO THE P

A-7 导入 SCD 文件界面 (采样部分)

2) 选择所需 SMV Inputs (针对于保护)或 SMV Outputs (针对于合并单元)控制块, 如图 4-2-10。

打钩后激活左下角的"配置 SMV",点击后即完成相应 SMV 信息的导入,如继续选择可继续

顺序导入 SV 信息。

3)选择所需 GOOSE 控制块,打钩后激活左下角的"GOOSE 发布"与"GOOSE 订阅",可以把 SCD 中的 GOOSE 控制块导入到软件的订阅(接收 GOOSE)与发布(发送 GOOSE),如图 A-8。

A-8 导入 SCD 文件 GOOSE 部分

4) 全部配置完毕后点击确定,依次在 SMV、GOOSE 订阅与 GOOSE 发布弹出以下界面如图 A-9, 依次把刚才所配置的 SMV、GOOSE 订阅与 GOOSE 发布信息自动匹配到软件界面中。可任

意指定导入开始组。

导入9-2 送	导入Goose发布	导入Goose订阅
操作 从 1 ▼ 组导入	操作 从 1 ▼ 组导入	操作 从 1
确定取消	确定取消	确定取消

图 A-9 自动匹配界面

5) 点击确定后即完成了报文的自动配置。包括 SMV 如图 A-10、GOOSE 订阅如图 A-11、GOOSE

发布的设置如图 A-12

- Ø SMV - M TEC61850-9-1北京文	 ○ 第一组 ○ 第一 	- - 41 🔨 👾 = 41 🕰	等而组	A 等工组	等之组	A #		4
● IEC61850-9-2报文		- 坦 🕑 第二坦 🕤 合并终端	第四组	♥ 第五祖 ♥	第八组	9 第	Ся <u>н</u> 🖌	1000
— 🏉 IEC60044-7/8报文	Testate	1647125.09	通道	夕称	8点 急;†	宣位	任位	
→ 余集器輸出	MAC目标地址 Ox	010ccd040001		第一77	57	0000	0000	-0
⊘ 弱信号輸出	MAC源地址 Ox	FFFFFFFFFFF		测定型	*	0000	0000	-
Ø Goose1]阋 ♠ Coose生在	Sampled Value ID	HI IIOIHI/LINO	2	保护电流	Ta	0000	0000	H
V GOOSE 2411	(SVID)	MLIIOIMU/LLNO. 2		保护电流	Th	0000	0000	
	APPID Ox	4001		保护电流	Th	0000	0000	
	VI AN TD DX	000	6	保护电流	Ic	0000	0000	
	VLAN ID ON	4	7	保护电流	Ic	0000	0000	
	VLAN Priority	4	8	中性占零	310	0000	0000	
	采样延时	3000 uS	9	中性占零	310	0000	0000	1
	通道数目	21	0 10	中性点间	310	0000	0000	
	同步方式	本地同步(Loc₂ ▼	• 11	中性点间	310	0000	0000	
	1-30//324	W	• 12	保护电压	Ua	0000	0000	
	DatSet	MLIIUIMU/LLNU\$c	13	保护电压	Ua	0000	0000	
	输出口选择	3 🗆 👻	14	保护电压	UΒ	0000	0000	
			• 15	保护电压	Ub	0000	0000	
	● 自定义 ◎	IEC61850-9-2LE	• 16	保护电压	Uc	0000	0000	
	마는 현실 - 는 사이 아 가는 자네	、	• 17	保护电压	Uc	0000	0000	L
	映射 半 祖 电 流 到	•	9 18	同期电压	Uz	0000	0000	
	映射本组电压到	•>	9 19	同期电压	Uz	0000	0000	
			A 00	冊 IP 由 IT	0110	0000	0000	
	段直 5. 样本 9.0	ACDII 4			OPTIONA	L		
	米件率 80	ASD0 1			Securit	у 📖	DatSet	L
	报文格式 IEC61850	-9-2LE 👻 🗐 不含	品质位	比例因子	RefrTm		SmpRate	0

图 A-10 自动配置后采样报文界面

图 A-11 自动配置后 GOOSE 报文信息界面

参数设置	Ø Goose	发布							
C61850-9-1报文	😜 G1	🕞 G2 🔁 G	3 😜 G4	🕞 G5 🛛 😜) G6 🗲) G7 📢) G8	🕞 G9	😜 G10
31850-9-2报文 30044-7/8报文	IED名称		PL110111	DKV高压线路	允许生在	空时间	1000)0	
器輸出	控制块索	茶引(GcRef)	PL1101PI1/	LNO\$GO\$gc	数据集		PL11	01PI1/L	LNO\$dsGOC
写動画	GOOSE标	示(GoID)	PL1101PI1/	委托(No	委托(NdsCom)		False		
布	应用标:	R(APPID) 0x	0006		测试(Test)		False		-
	目的地	址(MAC) 本号(ConfRev)	01-0c-cd-0	-00-06	VLAN	0:	e 000		
	配害版2		1		VI AN P		4		
		1.000	15		1				
	序号	描述		数据类型	据类型				
		GOOSE台闸出 GOOSE跳闸出	ロ 聖台出 ロ 跳涌出	FALSE					
	3	GOOSE跳相邻	线出口 发	FALSE					添加
	4	GOOSE跳闸起	失灵 失灵	FALSE					刪除
	5	GOOSE远传1台 COOSE远传1台	☆令輸出	FALSE					全部删除
	7	ChalmGGIO (□マ	FALSE					
								_	
								-	
	G00 S	E发布 发送	1	-					
	最短传	输时间T1 2mS	利	定条件下重	i传时间T(0 5000m3	5	时间。	品质 Oa

图 A-12 自动配置后 GOOSE 发布界面

备注:

(1) SMV 导入信息后通道为自动映射,按照先后顺序关联到软件的 G1~G4 组,如需要手动修改通道映射,可按"映射本组电流/电压到"按钮一步修改本组电流、电压到软件相应的 G1~G4 中。

(2) GOOSE 发布为模拟智能终端或其它 IED 给所需测试的 IED 发跳闸、合闸、断路器位置等信号,软件不仅可以导入当前 IED 的 GOOSE Inputs,也可以导入所要模拟的智能终端的 GOOSE Outputs。

(3) 状态序列 (4U, 3I)、状态序列 (6U, 6I) 每个测试项, 点 GOOSE 发布数据可以与开出 1~ 开出 8 关联,进行实时控制。

(4) 数据类型为 BOOL 量时,可选择 OUT1, OUT2,, OUT8,则将该数据关联到开出 1、

开出 2、……、开出 8 上。双位置[01]、[10]可以编辑为:OUT1_DBPOS、OUT2_DBPOS、……、 OUT8_DBPOS,实现将双位置合分位与开出 1、开出 2、……、开出 8 状态关联。

- 1) 在 Goose 控制块列表中选择 Goose 控制块。
- 2) 打开测试组件界面, 在参数设置去中点击 "GOOSE 发布"页后, 点击 "导入", 则导入所配

置的 GOOSE 块如图 A-13 所示。

序号	描述	数据类型	取反
	总断路器	[01]	
2	总断路器	UTCTIME	
3	A相断路器	[01]	
1	A相断路器	UTCTIME	
5	B相断路器	[01]	
5	B相断路器	UTCTIME	
7	C相断路器	[01]	
3	C相断路器	UTCTIME	
9	闸刀1	[01]	
10	闸刀1	UTCTIME	
11	闸刀2	[01]	
12	闸刀2	UTCTIME	
13	闸刀3	[01]	
14	闸刀3	UTCTIME	
15	闸刀4	[01]	
16	闸刀4	UTCTIME	
17	接地闸刀1	[01]	

附录 B 简单故障排除

当 PMUT600D 在使用中出现故障时:

- 1) 查阅软件用户手册或测试软件的在线帮助,寻求最快的解决方式;
- 2) 检查故障是否重复出现,并记录下来;
- 3) 当测试仪打开后电源指示灯不亮,有以下两种可能:
 - 测试仪可能没有电源供电;
 - 测试仪的保险丝断了。
- 4) 在软件上点击联机运行按钮,总提示联机失败:
 - 检查与测试仪连接的计算机必须安装有 10/100M 以太网卡,没有网卡的计算机可以 插入外插式网卡。网卡应安装好操作系统兼容的或自带的驱动程序,运行正常。已 安装网卡的计算机应能正常登录 Internet。
 - 查看网线是否连接。
 - 查看主机电源是否打开。
 - 查看 PowerTest 软件界面上设置的通讯口方式是否选择正确。
 - 检查 IP 地址的设置是否正确: 192.168.1.XXX (XXX 不能为 153)。
- 5) 保护电流或电压采样值加不上:
 - a) 电流、电压全部无输出, 请检查:
 - 能否正常联机,联机后运行灯是否长亮,Link灯是否闪亮;

- 报文配置是否正确;
- 输出报文跟光口的配置是否对应;
- 是否因试验人员将光网口的左边 TX(发送),右边 RX(接收)反接,造成 Link 灯
 不亮,应进行链路检查。
- b) 电流输出正常、电压无输出或输出不正常或电压输出正常、电流不正常, 请检查:
 - 电压是否设定输出值;
 - 是否将实际的电压通道配成0或者配错位。
- 6) 电流、电压输出量不准确:
 - 60044-8 里面 SCP, SCM, SV 是否与保护装置相同;
 - IEC61850-9-2 里面 CT, PT 变比, 电压/电流比例因子是否与保护装置相同;
 - 通道配置是否与现场电流电压的顺序一致。
- 7) GOOSE 订阅不到:
 - 订阅信息 (MAC 地址、APPID 等) 是否配置正确;
 - 确定光网口 TX, RX 是否反接、光纤是否有问题;
 - 确定 IED 智能装置是否发出相应 GOOSE 信息。
- 8) GOOSE 发布 IED 收不到:
 - 发布信息 (MAC 地址、APPID 等) 是否配置正确;
 - 相应测试界面中是否在 "GOOSE 发布"中导入所需发布的 GOOSE;
 - 数据集个数、类型是否与 IED 所需接收的一样;

- 确定光网口 TX, RX 是否反接、光纤是否有问题。
- 9) 拨打 24 小时技术支持电话 (4006800650) 寻求帮助。

产品规格可能随时更改, 恕不另行通知

2015-01 第一次修订