

Current Transducer LF 205-S/SP5

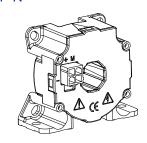
For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit

Electrical data

I_{PN}	Primary nominal RN	//S current		10	00		Α
I_{PM}	Primary current, measuring range			0 ±200			Α
R_{M}	Measuring resistance @		$T_{A} = 7$	$T_{\rm A} = 70 {\rm ^{\circ}C}$		T _A = 85 °C	
			$R_{\rm M min}$	$R_{\text{M max}}$	$R_{ m M\ min}$	$R_{ m M\ max}$	
	with ±12 V	@ $\pm 100 A_{max}$	0	95	15	94	Ω
		@ ±150 A _{max}	0	59	15	58	Ω
		@ ±200 A _{max}	0	40	15	39	Ω
	with ±15 V	@ ±100 A _{max}	16	123	47	122	Ω
		@ ±150 A _{max}	16	78	47	77	Ω
		@ ±200 A max	16	55	47	54	Ω
I_{SN}	Secondary nominal RMS current			100			mΑ
$N_{\rm p}/N_{\rm S}$	Turns ratio			1	: 1000		
U_{c}	Supply voltage (+5 %)			±12 15			V
$I_{\mathtt{C}}$	Current consumption	n @ ±15 V		17	' + I _S		mΑ

Accuracy - Dynamic performance data

$arepsilon_{tot}$	Total error @ I_{PN} , T_{A} = 25 °C Linearity error	±0.6 < 0.1		% %
o _L	Zinodiny one.	Тур	Max	, 0
$I_{\mathrm{O}\mathrm{E}}$	Electrical offset current @ $I_P = 0$, $T_A = 25$ °C		±0.2	mA
I_{OM}	Magnetic offset current ¹⁾ @ $I_P = 0$ and specified R_M ,			
·	after an overload of 3 × I_{PN}		±0.2	mΑ
$I_{{\sf O} {\it T}}$	Temperature variation of $I_{\rm O}$ = -40 °C +85 °C	±0.25	±0.65	mA
t _{D 10}	Delay time to 10 % of the final output value for $I_{\rm PN}$ ste	ер	< 500	ns
t _{D 90}	Delay time to 90 % of the final output value for $I_{\rm PN}$ ste	ep ²⁾	< 1	μs
BW	Frequency bandwidth (-3 dB)	DC	100	kHz


General data

T_{A}	Ambient operating temperature		- 40 +85	°C
T_{Ast}	Ambient storage temperature		- 40 +90	°C
$R_{\rm s}$	Secondary coil resistance	@ $T_A = 70 ^{\circ}C$	10	Ω
Ü		@ $T_{A} = 85 ^{\circ}\text{C}$	11	Ω
m	Mass	,	78	g
	Standard		EN 50155: 2017 3)	
			EN 50121-3-2	: 2016

Notes: 1) The result of the coercive force of the magnetic circuit

- ²⁾ For a di/dt = 100 A/µs
- 3) Additional information available on request.

$I_{\rm P\,N}$ = 100 A

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulating plastic case recognized according to UL 94-V0.

Special feature

- $I_{PN} = 100 \text{ A}$
- $I_{PM} = 0 \dots \pm 200 \text{ A}$
- $N_{\rm P}/N_{\rm S} = 1:1000$
- Connection to secondary circuit on MOLEX MINIFIT Jr 5566 with gold-plated pins.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- · Optimized delay time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- Single or three phase inverter
- Propulsion and braking chopper
- Propulsion converter
- Auxiliary converter
- Battery charger.

Application domain

Railway (fixed installations and onboard).

Current Transducer LF 205-S/SP5

Insulation coordination				
U_{d}	RMS voltage for AC insulation test, 50/60 Hz, 1 min	3.5	kV	
U_{Ni}	Impulse withstand voltage 1.2/50 μs	8.8	kV	
U_{t}^{T}	Partial discharge RMS test voltage ($q_{\rm m}$ < 10 pC)	> 2	kV	
		Min		
d_{CD}	Creepage distance	9.5	mm	
$d_{ extsf{CP}} \ d_{ extsf{CI}}$	Clearance	9.5	mm	
CTI	Comparative Tracking Index (group IIIa)	175		

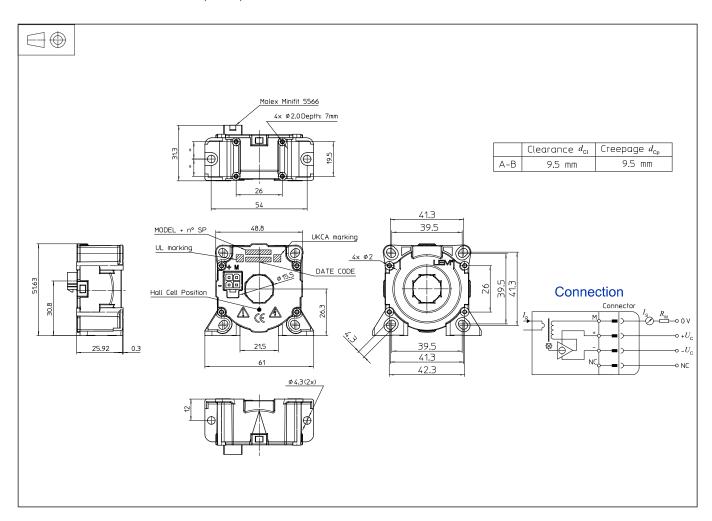
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LF 205-S/SP5 (in mm)

Mechanical characteristics

• General tolerance ±0.2 mm

 Transducer fastening Vertical position

2 holes Ø 4.3 mm 2 M4 steel screws

Recommended fastening torque 2.3 N·m

Or 4 hole

4 holes Ø 2.0 mm depth: 7 mm 4 screws PTKA 25

length: 6 mm

Transducer fastening

Horizontal position 4 holes \varnothing 4.3 mm

4 M4 steel screws

Recommended fastening torque 3.2 N·m

Or

4 holes Ø 2.0 mm

4 screws PTKA 25

min length: 11.5 mm with thickness of fixed plate

Recommended fastening torque
Primary through-hole

0.7 N·m Ø 15.5 mm

Connection of secondary

Molex Minifit 5566

with gold-plated pins

Remarks

- I_{S} is positive when I_{P} flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C.
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: https://www.lem.com/en/file/3137/download.
- Dynamic performances (di/dt and delay time) are best with a single bar completely filling the primary hole.

www.lem.com