

Voltage Transducer DVM series

 U_{PN} = 1800 ... 4200 V

Ref: DVM 1800; DVM 2000; DVM 3000; DVM 3500; DVM 3600; DVM 4000; DVM 4200

For the electronic measurement of voltage: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

Features

- Bipolar and insulated measurement of voltage
- Current output
- Primary input and output connections with M5 studs
- Compatible with LV 100 family
- Built-in device.

Advantages

- Low consumption and low losses
- Compact design
- Very low sensitivity to common mode voltage variations
- Excellent accuracy (offset, sensitivity, linearity)
- Fast delay time
- · Low temperature drift
- High immunity to external interferences.

Applications

- · AC variable speed and servo motor drives
- · Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications
- Renewable Energy (Solar and Wind)
- Single or three phase inverters

- Propulsion and braking choppers
- Propulsion converters
- Auxiliary converters
- High power drives
- Substations.

Standards

- EN 50155: 2021
- EN 50121-3-2: 2016
- EN 50124-1: 2017
- IEC 62497-1: 2010
- UL 347 1): 2016

Application Domains

- Industrial
- Railway (fixed installations and onboard).

Note: 1) When used with UL 347 Isolator N° 92.24.06.420.0.

Safety

If the device is used in a way that is not specified by the manufacturer, the protection provided by the device may be compromised. Always inspect the electronics unit and connecting cable before using this product and do not use it if damaged.

Mounting assembly shall guarantee the maximum primary conductor temperature, fulfill clearance and creepage distance, minimize electric and magnetic coupling, and unless otherwise specified can be mounted in any orientation.

Caution, risk of electrical shock

This transducer must be used in limited-energy secondary circuits SELV according to IEC 61010-1, in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating specifications.

Use caution during installation and use of this product; certain parts of the module can carry hazardous voltages and high currents (e.g. power supply, primary conductor).

Ignoring this warning can lead to injury and or/or cause serious damage.

De-energize all circuits and hazardous live parts before installing the product.

All installations, maintenance, servicing operations and use must be carried out by trained and qualified personnel practicing applicable safety precautions.

This transducer is a build-in device, whose hazardous live parts must be inaccessible after installation.

This transducer must be mounted in a suitable end-enclosure.

Besides make sure to have a distance of minimum 30 mm between the primary terminals of the transducer and other neighboring components.

Main supply must be able to be disconnected.

Never connect or disconnect the external power supply while the primary circuit is connected to live parts.

Never connect the output to any equipment with a common mode voltage to earth greater than 30 V.

This transducer is a built-in device, not intended to be cleaned with any product. Nevertheless if the user must implement cleaning or washing process, validation of the cleaning program has to be done by himself.

ESD susceptibility

The product is susceptible to be damaged from an ESD event and the personnel should be grounded when handling it.

Do not dispose of this product as unsorted municipal waste. Contact a qualified recycler for disposal.

Underwriters Laboratory Inc. recognized component

Absolute maximum ratings

Parameter	Symbol	Unit	Value
Maximum DC supply voltage = $(U_p = 0 \text{ V}, 0.1 \text{ s})$	$\pm \hat{U}_{ extsf{C max}}$	V	±33.6
Maximum DC supply voltage = (working) (- 40 + 85 °C)	$\pm U_{ m C\ max}$	V	±26.4
Electrostatic discharge voltage (HBM - Human Body Model)	$U_{\rm ESD\; HBM}$	kV	4
Maximum DC common mode voltage	$\begin{array}{c} U_{\rm HV+} + U_{\rm HV-} \\ {\rm and} \ U_{\rm HV+} - U_{\rm HV-} \end{array}$	kV	≤ 6.3 ≤ U _{PM}

Absolute maximum ratings apply at 25 °C unless otherwise noted.

Stresses above these ratings may cause permanent damage.

Exposure to absolute maximum ratings for extended periods may degrade reliability.

Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Ambient operating temperature	T_{A}	°C	-40		85	
Ambient storage temperature	$T_{ m Ast}$	°C	-50		90	
Equipment operating temperature class						EN 50155: OT6
Switch-on extended operating temperature class						EN 50155: ST0
Rapid temperature variation class						EN 50155: H1
Conformal coating type						EN 50155: PC2
Relative humidity	RH	%				Class 3K3 according to Table 1 of EN 60721-3-3
Shock & vibration categorie and class						EN 50155: 1B (EN 61373)
Mass	m	g		375		
Ingress protection rating				IP40		IEC 60529 (Indoor use)
Pollution degree					PD4	Insulation voltage accordingly
Altitude		m			2000 1)	
Impact rating				IK06		According to IEC 62262

RAMS data

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Useful life class						EN 50155: L4
Mean failure rate	Σ	h ⁻¹		1/1827550		According to IEC 62380 $T_{\rm A}$ = 45 °C ON: 20 hrs/day ON/OFF: 320 cycles/year $U_{\rm C}$ = ±24 V , $U_{\rm P}$ = 4200 V

Note: 1) Insulation coordination at 2000 m.

UL 347: Ratings and assumptions of certification

File # E315896 Volume: 1 Section: 3

Standards

- CSA C22.2 No. 253 Medium-Voltage AC Contactors, Controllers, and Control Centers
- UL 347 Standards for Safety for Medium-Voltage AC Contactors, Controllers, and Control Centers.

Conditions of acceptability

When installed in the end-use equipment, consideration shall be given to the following:

- 1 These devices must be mounted in a suitable end-use enclosure.
- 2 The terminals have not been evaluated for field wiring.
- 3 The rated Basic Insulation Level (BIL) is 20 kV for this device, after performing Impulse Withstand Tests. Additional testing will be required if a higher BIL rating is desired.
- 4 For products rated more than 2500 V, the specific kit model "UL 347 isolator" shall be mounted to the DVM.
- 5 The products have been evaluated for a maximum surrounding air temperature of 85 °C...
- 6 Low voltage circuits are intended to be powered by a circuit derived from an isolating source (such as a transformer, optical isolator, limiting impedance or electro-mechanical relay) and having no direct connection back to the primary circuit (other than through the grounding means).

Marking

Only those products bearing the UL or UR Mark should be considered to be Listed or Recognized and covered under UL's Follow-Up Service. Always look for the Mark on the product.

Assembly of UL 347 Isolator on primary studs.

UL 347 Isolator, reference number 92.24.06.420.0 provided.

Insulation coordination

Parameter	Symbol	Unit	≤ Value	Comment
RMS voltage for AC insulation test, 50 Hz, 1 min	$U_{\rm d}$	kV	12	
Impulse withstand voltage 1.2/50 µs	U_{Ni}	kV	30	According to IEC 62497-1
Partial discharge RMS test voltage ($q_{\rm m}$ < 10 pC)	$U_{\rm t}$	V	5000	
Case material	-	-	V0	
Comparative tracking index	CTI		600	According to UL 94

Between primary and secondary

Clearance	$d_{ extsf{CI}}$	mm	74	Shortest distance through air
Creepage distance	d_{Cp}	mm	101	Shortest path along device body
Application example RMS voltage line-to-neutral		V	1000	Reinforced insulation according to IEC 60664-1, IEC 61010-1 or IEC 62477-1 CAT III, PD2
Application example System voltage RMS		V	3600	Basic insulation according to IEC 61800-5-1 CAT III, PD2
Application example Rated insulation RMS voltage	$U_{ m Nm}$	V	4800	Basic insulation according to IEC 62497-1 CAT III, PD2, Rolling stock
Application example Rated insulation RMS voltage	$U_{ m Nm}$	V	3700	Reinforced insulation according to IEC 62497-1 CAT II, PD2

Between primary and ground (fastening screw M6 head)

Clearance	d_{CI}	mm	45	Shortest distance through air
Creepage distance	d_{Cp}	mm	101	Shortest path along device body
Application example Rated insulation RMS voltage		V	1000	Reinforced insulation according to IEC 61010-1 CAT III, PD2

Between secondary and ground (fastening screw M6 head)

Clearance	d_{CI}	mm	16	Shortest distance through air
Creepage distance	d_{Cp}	mm	29	Shortest path along device body
Application example Rated insulation RMS voltage		V	1000	Basic insulation according to IEC 61010-1 CAT III, PD2

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ure 1 n ,= 0 V
Primary nominal AC RMS voltage (continuous) U_{PNAC} V 1800 Primary voltage, measuring range U_{PM} V -2700 2700 2700 See derating on figure 3 see derating 5 see derating 5 see derating 6 see derating 6 see derating	n ,= 0 V
Primary voltage, measuring range $U_{P_{\rm MM}}$ V -2700 2700 See derating on figure 3 secondary current $I_{\rm S}$ mA 50 0 0 0 0 0 0 0 0 0 0	n ,= 0 V
Measuring resistance $R_{\rm M}$ Ω 0 see derating on figure Secondary current $I_{\rm S}$ mA 50 @ $U_{\rm PNDC}$ DC supply voltage = $U_{\rm C}$ V ±10.8 ±12 ±24 ±26.4 Tolerance ±10 % or Tolerance ±10 % or Typ value DC current consumption = $I_{\rm C}$ mA 30 @ $U_{\rm C}$ = ±24 V at $U_{\rm F}$ Power consumption $U_{\rm P}$ = 0 V @ $U_{\rm C}$ $P_{\rm C}$ W 1.44 @ $U_{\rm C}$ = ±24 V Power consumption $U_{\rm P}$ = $U_{\rm PNDC}$ @ $U_{\rm C}$ $P_{\rm C}$ W 2.64 @ $U_{\rm C}$ = ±24 V Inrush current NA (EN 50155) NA (EN 50155) Interruptions on power supply voltage class NA (EN 50155) Supply change-over class NA (EN 50155) Rise time of $U_{\rm C}$ (10 % 90 %) $I_{\rm fine}$ ms 100 Total error $e_{\rm tot}$ % -1 1 Temperature variation of $U_{\rm OE}$ referred to primary V -4.32 4.32 Temperature variation of $U_{\rm OE}$ referred to primary $U_{\rm OE}$ referred to primary $U_{\rm OE}$ referred to primary	n ,= 0 V
Secondary current $I_{\rm S}$ mA 50 @ $U_{\rm PNDC}$ DC supply voltage = $U_{\rm C}$ V ± 10.8 $\pm 12 \dots \pm 24$ ± 26.4 Tolerance ± 10 % of Typ value DC current consumption = $I_{\rm C}$ mA 30 @ $U_{\rm C} = \pm 24$ V at $U_{\rm P}$ vower consumption $U_{\rm P} = 0$ V @ $U_{\rm C}$ P _C W 1.44 @ $U_{\rm C} = \pm 15$ V at $U_{\rm P}$ Power consumption $U_{\rm P} = U_{\rm PNDC}$ @ $U_{\rm C}$ P _C W 2.64 @ $U_{\rm C} = \pm 24$ V Na (EN 50155) Interruptions on power supply voltage class Interruptions on power supply voltage class Supply change-over class Rise time of $U_{\rm C}$ (10 % 90 %) Total error $E_{\rm tot}$ % -0.5 $E_{\rm tot}$ % -0.5 $E_{\rm Col}$ % -0.5 $E_{\rm Col}$ 3.6 @ 25 °C 85 °C	n ,= 0 V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,= 0 V
DC current consumption = $ I_{C} \qquad \text{MA} \qquad 30 \qquad 0 U_{C} = \pm 24 \text{ V at } U_{F} $ $ Power consumption \ U_{P} = 0 \text{ V } \textcircled{0} \ U_{C} \qquad P_{C} \qquad W \qquad 1.44 \qquad 0 U_{C} = \pm 24 \text{ V} $ $ Power consumption \ U_{P} = U_{PNDC} \textcircled{0} \ U_{C} \qquad P_{C} \qquad W \qquad 2.64 \qquad 0 U_{C} = \pm 24 \text{ V} $ $ Power consumption \ U_{P} = U_{PNDC} \textcircled{0} \ U_{C} \qquad P_{C} \qquad W \qquad 2.64 \qquad 0 U_{C} = \pm 24 \text{ V} $ $ Intrush current \qquad NA (EN 50155) $ $ Interruptions on power supply voltage class \qquad NA (EN 50155) $ $ Supply change-over class \qquad NA (EN 50155) $ $ Rise time of \ U_{C} (10 \% \dots 90 \%) \qquad I_{fise} \qquad ms \qquad 100 $ $ Total error \qquad e_{tot} \qquad \% \qquad -1 \qquad 1 \qquad 1 $ $ Total error \qquad e_{tot} \qquad \% \qquad -0.5 \qquad 0.5 \qquad \textcircled{0.25 °C} $ $ Total error \qquad e_{tot} \qquad W \qquad -3.6 \qquad 3.6 \qquad \textcircled{0.25 °C} \dots 85 °C $,= 0 V
Power consumption = $I_{\rm c}$ mA $I_{\rm c}$ 40 @ $U_{\rm c}$ = ±15 V at $U_{\rm p}$ Power consumption $U_{\rm p}$ = 0 V @ $U_{\rm c}$ P _c W 1.44 @ $U_{\rm c}$ = ±24 V Power consumption $U_{\rm p}$ = $U_{\rm PNDC}$ @ $U_{\rm c}$ = ±24 V Inrush current NA (EN 50155) Interruptions on power supply voltage class NA (EN 50155) Supply change-over class NA (EN 50155) Rise time of $U_{\rm c}$ (10 % 90 %) $I_{\rm rise}$ ms 100 Total error $I_{\rm ctot}$ % -1 1 1 Total error $I_{\rm ctot}$ % -0.5 0.5 @ 25 °C 100 % tested in process and $I_{\rm const}$ and $I_{$	
Power consumption $U_p = 0 \text{ V} @ U_c$ P_c W 1.44 $@ U_c = \pm 24 \text{ V}$ Power consumption $U_p = U_{PNDC} @ U_c$ P_c W 2.64 $@ U_c = \pm 24 \text{ V}$ Inrush current NA (EN 50155) Interruptions on power supply voltage class NA (EN 50155) Supply change-over class NA (EN 50155) Rise time of U_c (10 % 90 %) Total error ε_{tot} % -1 1 Total error ε_{tot} % -0.5 0.5 $@ 25 ^{\circ}\text{C}$ Temperature variation of U_{oE} referred to primary U_{oET} V -3.6 3.6 $@ 25 ^{\circ}\text{C}$ 85 $^{\circ}\text{C}$,= 0 V
Power consumption $U_{\rm p} = U_{\rm PNDC} @ U_{\rm C}$	
Inrush current NA (EN 50155) Interruptions on power supply voltage class NA (EN 50155) Supply change-over class NA (EN 50155) Rise time of U_c (10 % 90 %) t_{rise} ms Total error ε_{tot} % -1 1 Total error ε_{tot} % -0.5 0.5 @ 25 °C (100 % tested in process) Temperature variation of U_{OE} referred to primary V -4.32 4.32 Floatical Offset voltage referred to primary V -1.8 0.25 °C 85 °C	
Interruptions on power supply voltage class	
Supply change-over class NA (EN 50155) Rise time of U_c (10 % 90 %) t_{rise} ms 100 Total error ε_{tot} % -1 1 Total error ε_{tot} % -0.5 0.5 $\frac{0}{25}$ °C 100 % tested in production of $\frac{1}{20}$ % tested in production of $\frac{1}{20}$ % and $\frac{1}{20}$ % tested in production of $\frac{1}{20}$ % and	
Rise time of $U_{\rm c}$ (10 % 90 %) $ t_{\rm rise} = ms $	
Total error $\varepsilon_{\text{tot}} \qquad \% \qquad -1 \qquad \qquad 1$ Total error $\varepsilon_{\text{tot}} \qquad \% \qquad -0.5 \qquad 0.5 \qquad \textcircled{@ 25 °C} \qquad 100 \% \text{ tested in pro}$ Temperature variation of $U_{\text{OE}T}$ erferred to primary $U_{\text{OE}T} \qquad V \qquad -3.6 \qquad 3.6 \qquad \textcircled{@ 25 °C} \dots 85 °C$ Floatrical Offset voltage referred to primary $U_{\text{OE}T} \qquad V \qquad -1.8 \qquad 0.5 \qquad \textcircled{@ 25 °C} \dots 85 °C$	
Total error $\varepsilon_{\text{tot}} \qquad \% \qquad -0.5 \qquad 0.5 \qquad \textcircled{@ 25 °C} \\ 100 \% \text{ tested in pro} \\ U_{\text{OE}T} \qquad V \qquad -3.6 \qquad 3.6 \qquad \textcircled{@ 25 °C} \\ -3.6 \qquad 3.6 \qquad \textcircled{@ 25 °C} \\ -3.6 \qquad 0.5 \qquad 0.5 \qquad \textcircled{@ 25 °C} \\ -4.32 \qquad 0.5 \qquad 0.5 \qquad 0.5 \qquad \textcircled{@ 25 °C} \\ -4.32 \qquad 0.5 \qquad 0.5$	
Temperature variation of U_{OE} referred to primary $U_{\text{OE}T}$ V $V_{\text{OE}T}$ $V_$	
Temperature variation of U_{OE} referred to primary $U_{\text{OE}T}$ V -3.6 3.6 @ 25 °C 85 °C	duction
-3.6 3.6 @ 25 °C 85 °C	
	duction
Sensitivity S µA/V 27.8 @ 25 °C	
Sensitivity error $\varepsilon_{\rm S}$ % -0.3 0.3 @ 25 °C	
Temperature variation of sensitivity error ε_{s_T} % -0.5 0.5 referred to 25 °C	
Linearity error $\varepsilon_{\rm L} \qquad \% \ {\rm of} \ U_{\rm PN} \qquad -0.5 \qquad 0.5 \qquad \underbrace{ @ \ 25 \ ^{\circ}{\rm C}}_{\pm 2700 \ {\rm V \ range}}$	
RMS noise current 100 Hz 100 kHz referred to secondary I_{no} μA 30 @ 25 °C	
Delay time @ 10 % of the final output value for U_{PN} step t_{D10} μs 30	
Delay time @ 90 % of the final output value for U_{PN} step t_{D90} μs 50 60 0 to 1800 V step, 6	kV/µs
Fragues as handwidth 12.8 -3 dB	
Frequency bandwidth BW kHz 8 -1 dB	
Start-up time t _{start} ms 190 250	
Resistance of primary $R_{\rm p}$ $M\Omega$ 25.1	
Total primary power loss @ U_{PN} P_{P} W 0.13	

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal DC voltage (continuous)	U_{PNDC}	V		2000		
Primary nominal AC RMS voltage (continuous)	$U_{ m PNAC}$	V		2000		
Primary voltage, measuring range	U_{PM}	V	-3000		3000	
Measuring resistance	R_{M}	Ω	0			see derating on figure 1
Secondary current	I_{S}	mA		50		$\bigcirc U_{\text{PNDC}}$
DC supply voltage ==	U_{c}	V	±10.8	±12 ±24	±26.4	Tolerance ±10 % on Typ value
DO				30		@ $U_{\rm c}$ = ±24 V at $U_{\rm p}$ = 0 V
DC current consumption =	I_{C}	mA		40		@ $U_{\rm C}$ = ±15 V at $U_{\rm P}$ = 0 V
Power consumption U_p = 0 V @ U_c	$P_{\mathtt{C}}$	W		1.44		@ U _C = ±24 V
Power consumption $U_{\rm P}$ = $U_{\rm PNDC}$ @ $U_{\rm C}$	P_{C}	W		2.64		@ U _C = ±24 V
Inrush current						NA (EN 50155)
Interruptions on power supply voltage class						NA (EN 50155)
Supply change-over class						NA (EN 50155)
Rise time of $U_{\rm C}$ (10 % 90 %)	$t_{ m rise}$	ms			100	
Total error	$\varepsilon_{\mathrm{tot}}$	%	-1		1	
Total error	$arepsilon_{ m tot}$	%	-0.5		0.5	@ 25 °C 100 % tested in production
			-4.8		4.8	
Temperature variation of U_{OE} referred to primary	U_{OET}	V	-4.0		4.0	@ 25 °C 85 °C
Electrical Offset voltage referred to primary	U_{OE}	V	-2.0		2.0	@ 25 °C 100 % tested in production
Sensitivity	S	μA/V		25		@ 25 °C
Sensitivity error	$\varepsilon_{\rm S}$	%	-0.3		0.3	@ 25 °C
Temperature variation of sensitivity error	$\varepsilon_{_{ST}}$	%	-0.5		0.5	referred to 25 °C
Linearity error	$arepsilon_{L}$	% of $U_{\scriptscriptstyle{\mathrm{P}\mathrm{N}}}$	-0.5		0.5	@ 25 °C ±3000 V range
RMS noise current 100 Hz 100 kHz referred to secondary	I_{no}	μA		30		@ 25 °C
Delay time @ 10 % of the final output value for $U_{\rm PN}$ step	t _{D 10}	μs		30		
Delay time @ 90 % of the final output value for $U_{\rm PN}$ step	t _{D 90}	μs		50	60	0 to 2000 V step, 6 kV/µs
Fraguency bondwidth	DW.	1411-		12.8		-3 dB
Frequency bandwidth	BW	kHz		8		-1 dB
Start-up time	t _{start}	ms		190	250	
Resistance of primary	$R_{\rm p}$	МΩ		25.1		
Total primary power loss @ $U_{\rm PN}$	P_{P}	W		0.16		

A Amin Amax' C ' M '			<u>`</u>	, , ,,,		
Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal DC voltage (continuous)	$U_{\rm PNDC}$	V		3000		
Primary nominal AC RMS voltage (continuous)	U_{PNAC}	V		3000		
Primary voltage, measuring range	U_{PM}	V	-4500		4500	
Measuring resistance	R_{M}	Ω	0			see derating on figure 1
Secondary current	I_{S}	mA		50		@ $U_{\rm PNDC}$
DC supply voltage	U_{C}	V	±10.8	±12 ±24	±26.4	Tolerance ±10 % on Typ value
DC current consumption ==	I	mA		30		@ $U_{\rm C}$ = ±24 V at $U_{\rm P}$ = 0 V
DC current consumption =	I_{C}	IIIA		40		@ $U_{\rm c}$ = ±15 V at $U_{\rm p}$ = 0 V
Power consumption $U_{\rm P}$ = 0 V @ $U_{\rm C}$	$P_{\mathbb{C}}$	W		1.44		@ U _c = ±24 V
Power consumption $U_{\rm P}$ = $U_{\rm PNDC}$ @ $U_{\rm C}$	$P_{\mathbb{C}}$	W		2.64		@ U _c = ±24 V
Inrush current						NA (EN 50155)
Interruptions on power supply voltage class						NA (EN 50155)
Supply change-over class						NA (EN 50155)
Rise time of $U_{\rm c}$ (10 % 90 %)	t_{rise}	ms			100	
Total error	$\varepsilon_{\mathrm{tot}}$	%	-1		1	
Total error	$arepsilon_{ ext{tot}}$	%	-0.5		0.5	@ 25 °C 100 % tested in production
			-7.2		7.2	
Temperature variation of $U_{\text{O}\text{E}}$ referred to primary	U_{OET}	V	-6.0		6.0	@ 25 °C 85 °C
Electrical Offset voltage referred to primary	U_{OE}	V	-3.0		3.0	@ 25 °C 100 % tested in production
Sensitivity	S	μA/V		16,67		@ 25 °C
Sensitivity error	$\varepsilon_{\rm S}$	%	-0.3		0.3	@ 25 °C
Temperature variation of sensitivity error	$\varepsilon_{_{\mathbf{S}T}}$	%	-0.5		0.5	referred to 25 °C
Linearity error	$arepsilon_{f L}$	% of $U_{\scriptscriptstyle{\mathrm{PN}}}$	-0.5		0.5	@ 25 °C ±4500 V range
RMS noise current 100 Hz 100 kHz referred to secondary	I_{no}	μA		30		@ 25 °C
Delay time @ 10 % of the final output value for $U_{\rm PN}$ step	t _{D 10}	μs		30		
Delay time @ 90 % of the final output value for $U_{\rm PN}$ step	t _{D 90}	μs		50	60	0 to 3000 V step, 6 kV/μs
Frequency bandwidth	BW	kHz		12.8		-3 dB
				8		-1 dB
Start-up time	t _{start}	ms		190	250	
Resistance of primary	$R_{\rm p}$	ΜΩ		25.1		
Total primary power loss @ $U_{\rm PN}$	P_{P}	W		0.36		

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal DC voltage (continuous)	$U_{\rm PNDC}$	V		3500		
Primary nominal AC RMS voltage (continuous)	$U_{\rm PNAC}$	V		3500		
Primary voltage, measuring range	U_{PM}	V	-5250		5250	
Measuring resistance	R_{M}	Ω	0			see derating on figure 1
Secondary current	$I_{\rm S}$	mA		50		@ U_{PNDC}
DC supply voltage =	$U_{\mathtt{C}}$	V	±10.8	±12 ±24	±26.4	Tolerance ±10 % on Typ value
DC current consumption =	ī	mΛ		30		@ $U_{\rm C}$ = ±24 V at $U_{\rm P}$ = 0 V
DC current consumption =	$I_{\mathtt{C}}$	mA		40		@ $U_{\rm C}$ = ±15 V at $U_{\rm P}$ = 0 V
Power consumption $U_P = 0 \text{ V} \textcircled{0} U_C$	$P_{\mathbb{C}}$	W		1.44		@ U _C = ±24 V
Power consumption $U_{\rm P}$ = $U_{\rm PNDC}$ @ $U_{\rm C}$	$P_{\mathtt{C}}$	W		2.64		@ U _C = ±24 V
Inrush current						NA (EN 50155)
Interruptions on power supply voltage class						NA (EN 50155)
Supply change-over class						NA (EN 50155)
Rise time of $U_{\rm c}$ (10 % 90 %)	$t_{\rm rise}$	ms			100	
Total error	$\varepsilon_{\mathrm{tot}}$	%	-1		1	
Total error	$arepsilon_{ ext{tot}}$	%	-0.5		0.5	@ 25 °C 100 % tested in production
		.,	-8.4		8.4	
Temperature variation of $U_{\text{o}\text{E}}$ referred to primary	$U_{OE \mathit{T}}$	V	-7.0		7.0	@ 25 °C 85 °C
Electrical Offset voltage referred to primary	U_{OE}	V	-3.5		3.5	@ 25 °C 100 % tested in production
Sensitivity	S	μA/V		14.29		@ 25 °C
Sensitivity error	$arepsilon_{S}$	%	-0.3		0.3	@ 25 °C
Temperature variation of sensitivity error	$\varepsilon_{{\rm S}T}$	%	-0.5		0.5	referred to 25 °C
Linearity error	$arepsilon_{L}$	% of $U_{\scriptscriptstyle{\mathrm{PN}}}$	-0.5		0.5	@ 25 °C ±5250 V range
RMS noise current 100 Hz 100 kHz referred to secondary	I_{no}	μA		30		@ 25 °C
Delay time @ 10 % of the final output value for $U_{\rm PN}$ step	t _{D 10}	μs		30		
Delay time @ 90 % of the final output value for $U_{\rm PN}$ step	t _{D 90}	μs		50	60	0 to 3500 V step, 6 kV/μs
Frequency bandwidth	BW	kHz		12.8		-3 dB
Troquency bandwidth	<i>D</i> # #	NITZ		8		-1 dB
Start-up time	t _{start}	ms		190	250	
Resistance of primary	R_{P}	МΩ		25.1		
Total primary power loss @ U_{PN}	P_{P}	W		0.49		

A Amin Amax, C , M ,				, , , , , ,		
Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal DC voltage (continuous)	$U_{\rm PNDC}$	V		3600		
Primary nominal AC RMS voltage (continuous)	U_{PNAC}	V		3600		
Primary voltage, measuring range	U_{PM}	\ \	-5400		5400	
Measuring resistance	R_{M}	Ω	0			see derating on figure 1
Secondary current	I_{S}	mA		50		$\textcircled{0}\ U_{\text{PNDC}}$
DC supply voltage =	U_{C}	V	±10.8	±12 ±24	±26.4	Tolerance ±10 % on Typ value
DC aurent consumption	7	A		30		@ $U_{\rm C}$ = ±24 V at $U_{\rm P}$ = 0 V
DC current consumption =	I_{C}	mA		40		@ $U_{\rm C}$ = ±15 V at $U_{\rm P}$ = 0 V
Power consumption U_p = 0 V @ U_c	p_{C}	W		1.44		@ U _C = ±24 V
Power consumption $U_{\rm p}$ = $U_{\rm PNDC}$ @ $U_{\rm C}$	P_{C}	W		2.64		@ U _C = ±24 V
Inrush current						NA (EN 50155)
Interruptions on power supply voltage class						NA (EN 50155)
Supply change-over class						NA (EN 50155)
Rise time of $U_{\rm c}$ (10 % 90 %)	t _{rise}	ms			100	
Total error	$\varepsilon_{\mathrm{tot}}$	%	-1		1	
Total error	$arepsilon_{ m tot}$	%	-0.5		0.5	@ 25 °C 100 % tested in production
			-8.66		8.66	
Temperature variation of U_{OE} referred to primary	$U_{\text{OE}T}$	V	-7.2		7.2	@ 25 °C 85 °C
Electrical Offset voltage referred to primary	U_{OE}	V	-3.60		3.60	@ 25 °C 100 % tested in production
Sensitivity	S	μA/V		13.89		@ 25 °C
Sensitivity error	ε_{S}	%	-0.3		0.3	@ 25 °C
Temperature variation of sensitivity error	$\varepsilon_{_{ST}}$	%	-0.5		0.5	referred to 25 °C
Linearity error	$arepsilon_{ m L}$	% of $U_{\scriptscriptstyle {\sf PN}}$	-0.5		0.5	@ 25 °C ±5400 V range
RMS noise current 100 Hz 100 kHz referred to secondary	I_{no}	μA		30		@ 25 °C
Delay time @ 10 % of the final output value for $U_{\rm PN}$ step	t _{D 10}	μs		30		
Delay time @ 90 % of the final output value for U_{PN} step	t _{D 90}	μs		50	60	0 to 3600 V step, 6 kV/μs
Frequency bandwidth	BW	kHz		12.8		-3 dB
- Toquonoy banawidin	<i>D</i> ,,	IXI IZ		8		-1 dB
Start-up time	t _{start}	ms		190	250	
Resistance of primary	R_{P}	ΜΩ		25.1		
Total primary power loss @ $U_{\rm PN}$	P_{P}	W		0.52		

Primary nominal DC voltage (continuous) U_{PASC} V 4000 Primary nominal AC RMS voltage (continuous) U_{PASC} V 4000 Primary voltage, measuring range U_{PASC} V -6000 60000 Becomposed for the primary voltage and primary sistance R_{W_0} Q 0 see derating on figure 1 Secondary current I_{S_0} mA 50 W_{PASC}	Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary voltage, measuring range U_{PM} V -6000 6000 Measuring resistance R_{M} Ω 0 see derating on figure 1 Secondary current I_{S} mA 50 @ U_{com} DC supply voltage = U_{G} V ±10.8 ±12±24 ±26.4 Tolerance ±10 % on Typ value DC current consumption I_{C} mA 30 @ U_{C} ±24 V at U_{C} = 0 V Power consumption U_{C} = 0 V @ U_{C} P_{C} W 1.44 @ U_{C} ±24 V at U_{C} = 0 V Power consumption U_{C} = 0 V @ U_{C} P_{C} W 2.64 @ U_{C} ±24 V at U_{C} = 0 V Power consumption U_{C} = 0 V @ U_{C} P_{C} W 2.64 @ U_{C} ±24 V at U_{C} = 0 V Power consumption U_{C} = 0 V @ U_{C} P_{C} W 2.64 @ U_{C} = ±24 V Internation of uncertainty U_{C} = U_{C} V_{C} NA (EN 50155) NA (EN 50155) Rise time of U_{C} (10 % 90 %) U_{C} = U_{C} U_{C} = U_{C} U_{C} = U_{C} U_{C} = U_{C} = U_{C} <	Primary nominal DC voltage (continuous)	$U_{\rm PNDC}$	V		4000		
Measuring resistance R_{st} Ω 0 see derating on figure 1 Secondary current I_g mA 50 @ $U_{c_{RRDC}}$ DC supply voltage = U_c V ±10.8 ±12±24 ±26.4 Tolerance ±10 % on Typy value DC current consumption v_c I_c mA 30 @ U_c = ±24 V at U_p = 0 V Power consumption U_c = 0 V @ U_c I_c W 1.44 @ U_c = ±24 V Power consumption U_c = 0 V @ U_c I_c W 2.64 @ U_c = ±24 V Power consumption U_c = 0 V @ U_c I_c W 2.64 @ U_c = ±24 V Intrush current Intrush current NA (EN 50155) NA (EN 50155) Interpritions on power supply voltage class Interpritions on power supply voltage class NA (EN 50155) Supply change-over class Interpritions on power supply voltage class NA (EN 50155) Supply change-over class Interpritions on power supply voltage class Interpritions on power supply voltage class NA (EN 50155) Supply change-over class Interpritions on power supply voltage class Interpritio	Primary nominal AC RMS voltage (continuous)	U_{PNAC}	V		4000		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Primary voltage, measuring range	U_{PM}	V	-6000		6000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Measuring resistance	R_{M}	Ω	0			see derating on figure 1
Do Supply Voltage = U_c V ±10.8 ±12±24 ±26.4 Typ value DC current consumption = I_c mA 30 @ $U_c = ±24$ V at $U_p = 0$ V Power consumption $U_p = 0$ V @ U_c P_c W 1.44 @ $U_c = ±24$ V Power consumption $U_p = 0$ V @ U_c P_c W 2.64 @ $U_c = ±24$ V Inrush current NA (EN 50155) NA (EN 50155) NA (EN 50155) Interruptions on power supply voltage class NA (EN 50155) NA (EN 50155) Supply change-over class Interruptions on power supply voltage class Interruptions on power supply voltage class NA (EN 50155) Rise time of U_c (10 % 90 %) I_{cos} ms 100 Total error e_{cos} % -0.5 0.5 @ 25 °C Total error e_{cos} % -0.5 9.6 100 % tested in production Temperature variation of U_{cos} referred to primary U_{cos} V -4.0 4.0 @ 25 °C Sensitivity S µA/V 12.5 @ 25 °C 25 °C	Secondary current	I_{S}	mA		50		$\bigcirc U_{\text{PNDC}}$
DC current consumption	DC supply voltage =	U_{C}	V	±10.8	±12 ±24	±26.4	
Power consumption $U_{\nu} = 0 \lor @ U_{c}$	DC surrent consumption	,	A		30		@ $U_{\rm C}$ = ±24 V at $U_{\rm P}$ = 0 V
Power consumption $U_p = U_{PNDC} @ U_C$ P_C W 2.64 @ $U_C = \pm 24 \text{ V}$ Inrush current NA (EN 50155) NA (EN 50155) NA (EN 50155) Supply change-over class NA (EN 50155) NA (EN 50155) Rise time of U_C (10 % 90 %) t_{max} ms 100 Total error t_{nat} % -1 1 Total error t_{nat} % -0.5 0.5 @ 25 °C 100 % tested in production -9.6 9.6 -8.0 8.0 @ 25 °C Electrical Offset voltage referred to primary U_{OE} V -4.0 4.0 @ 25 °C Electrical Offset voltage referred to primary U_{OE} V -4.0 4.0 @ 25 °C Electrical Offset voltage referred to primary U_{OE} V -4.0 4.0 @ 25 °C Sensitivity S μA/V 12.5 @ 25 °C Sensitivity error v_0 % -0.3 0.3 @ 25 °C Temperature variation of sensitivity error v_0 <td< td=""><td>DC current consumption =</td><td>$I_{\rm c}$</td><td>mA</td><td></td><td>40</td><td></td><td>@ $U_{\rm C}$ = ±15 V at $U_{\rm P}$ = 0 V</td></td<>	DC current consumption =	$I_{\rm c}$	mA		40		@ $U_{\rm C}$ = ±15 V at $U_{\rm P}$ = 0 V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Power consumption $U_{\rm P}$ = 0 V @ $U_{\rm C}$	P_{C}	W		1.44		@ U _C = ±24 V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Power consumption $U_{\rm P}$ = $U_{\rm PNDC}$ @ $U_{\rm C}$	P_{C}	W		2.64		@ U _C = ±24 V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Inrush current						NA (EN 50155)
Rise time of $U_{\rm C}$ (10 % 90 %) $t_{\rm Riso}$ ms 100 Total error $\varepsilon_{\rm lot}$ % -1 1 Total error $\varepsilon_{\rm lot}$ % -0.5 0.5 @ 25 °C 100 % tested in production Temperature variation of $U_{\rm oE}$ referred to primary $U_{\rm oE}$ V -0.5 9.6 Electrical Offset voltage referred to primary $U_{\rm oE}$ V -4.0 4.0 @ 25 °C 100 % tested in production Sensitivity S μ A/V 12.5 @ 25 °C 100 % tested in production Sensitivity error $\varepsilon_{\rm s}$ V -4.0 4.0 @ 25 °C 100 % tested in production Sensitivity error $\varepsilon_{\rm s}$ μ A/V 12.5 @ 25 °C 100 % tested in production Sensitivity error $\varepsilon_{\rm s}$ μ A/V 12.5 @ 25 °C 100 % tested in production Inequality error $\varepsilon_{\rm s}$ μ A/V 12.5 @ 25 °C 100 % tested in production Inequality error $\varepsilon_{\rm s}$ μ A/V 12.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Interruptions on power supply voltage class						NA (EN 50155)
Total error $e_{\rm tot}$ % -1 1 Total error $e_{\rm tot}$ % -0.5 0.5 @ 25 °C 100 % tested in production Temperature variation of $U_{\rm og}$ referred to primary $U_{\rm og}$ referred to primary V -9.6 9.6 Electrical Offset voltage referred to primary $U_{\rm og}$ V -4.0 4.0 @ 25 °C 100 % tested in production Sensitivity S μA/V 12.5 @ 25 °C Sensitivity error $e_{\rm S}$ % -0.3 0.3 @ 25 °C Temperature variation of sensitivity error $e_{\rm S}$ % -0.5 0.5 referred to 25 °C Linearity error $e_{\rm S}$ % of $U_{\rm PN}$ -0.5 0.5 0.5 0.5 °C RMS noise current 100 Hz 100 kHz referred to secondary $I_{\rm ro}$ μA 30 @ 25 °C Delay time @ 10 % of the final output value for $U_{\rm PN}$ step $t_{\rm D.10}$ μs 30 0.5 °C Delay time @ 90 % of the final output value for $U_{\rm PN}$ step $t_{\rm D.10}$ μs 50 60 0 to 4000 V step, 6 kV/μs Frequency bandwidth $E_{\rm MS}$ to the final output value for E_{\rm	Supply change-over class						NA (EN 50155)
Total error $e_{\rm int}$ % -0.5 0.5 @ 25 °C 100 % tested in production Temperature variation of $U_{\rm oE}$ referred to primary $U_{\rm oEF}$ V -9.6 9.6 Electrical Offset voltage referred to primary $U_{\rm oE}$ V -4.0 4.0 @ 25 °C 100 % tested in production Sensitivity S μA/V 12.5 @ 25 °C 100 % tested in production Sensitivity error $e_{\rm s}$ % -0.3 0.3 @ 25 °C 100 % tested in production Temperature variation of sensitivity error $e_{\rm s}$ % -0.3 0.3 @ 25 °C 100 % Temperature variation of sensitivity error $e_{\rm s}$ % -0.5 0.5 referred to 25 °C 100 % Linearity error $e_{\rm s}$ % of $U_{\rm p}$ -0.5 0.5 @ 25 °C 100 % RMS noise current 100 Hz 100 kHz referred to secondary $I_{\rm no}$ μA 30 @ 25 °C 100 % Delay time @ 10 % of the final output value for $U_{\rm p,N}$ step $I_{\rm 0.00}$ μs 50 60 0 to 4000 V step, 6 kV/μs Frequency bandwi	Rise time of $U_{\rm c}$ (10 % 90 %)	$t_{ m rise}$	ms			100	
Temperature variation of U_{OE} referred to primary U_{OE} V V_{OE} V V_{OE}	Total error	$\varepsilon_{\mathrm{tot}}$	%	-1		1	
Temperature variation of U_{OE} referred to primary U_{OE} V -8.0 8.0 @ 25°C 85°C Electrical Offset voltage referred to primary U_{OE} V -4.0 4.0 @ 25°C 85°C Sensitivity S $\mu\text{A/V}$ 12.5 @ 25°C 90°C $90^{\circ}\text$	Total error	$arepsilon_{ ext{tot}}$	%	-0.5		0.5	
Electrical Offset voltage referred to primary U_{0E} V -4.0 4.0 $25^{\circ}\mathrm{C}$ $85^{\circ}\mathrm{C}$ $0.0^{\circ}\mathrm{C}$ $0.0^$	Temperature variation of U_{OE} referred to primary	$U_{{\sf OE}T}$	V	-9.6		9.6	
Sensitivity S μ A/V I 12.5 I				-8.0		8.0	@ 25 °C 85 °C
Sensitivity error $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Electrical Offset voltage referred to primary	U_{OE}	V	-4.0		4.0	@ 25 °C 100 % tested in production
Temperature variation of sensitivity error $\varepsilon_{\text{S},T}$ % -0.5 0.5 referred to 25 °C Linearity error ε_{L} % of U_{PN} -0.5 0.5 $\frac{2}{25}$ °C $\frac{25}{26000}$ °C $\frac{25}{260000}$ °C $\frac{25}{26000}$ °C $\frac{25}{26000}$ °C $\frac{25}{26000}$ °C $\frac{25}{26000}$ °C $\frac{25}{26000}$ °C $\frac{25}{26000}$ °C $\frac{25}{260000}$ °C $\frac{25}{26000}$ °C $\frac{25}{26000}$ °C $\frac{25}{26000}$ °C $\frac{25}{26000}$ °C $\frac{25}{26000}$ °C $\frac{25}{26000}$ °C $\frac{25}{260000}$ °C $\frac{25}{26000}$	Sensitivity	S	μA/V		12.5		@ 25 °C
Linearity error $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sensitivity error	$\varepsilon_{\rm S}$	%	-0.3		0.3	@ 25 °C
Linearity error $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Temperature variation of sensitivity error	$\varepsilon_{_{\mathrm{S}T}}$	%	-0.5		0.5	referred to 25 °C
Secondary I_{no} I_{n	Linearity error		% of $U_{\scriptscriptstyle{\mathrm{PN}}}$	-0.5		0.5	
Delay time @ 90 % of the final output value for U_{PN} step t_{D90} μs t_{D90} t_{D90		I_{no}	μA		30		@ 25 °C
Frequency bandwidth $ BW = $	Delay time @ 10 % of the final output value for $U_{\rm PN}$ step	t _{D 10}	μs		30		
Frequency bandwidth BW kHz 8 -1 dB Start-up time t_{start} ms 190 250	Delay time @ 90 % of the final output value for $U_{\rm PN}$ step	t _{D 90}	μs		50	60	0 to 4000 V step, 6 kV/µs
Start-up time t _{start} ms 190 250	Frequency bandwidth	RW/	kHz		12.8		-3 dB
· Start		BW			8		-1 dB
	Start-up time	t _{start}	ms		190	250	
	Resistance of primary	-	ΜΩ		25.1		
Total primary power loss @ U_{PN} P_{P} W 0.64	Total primary power loss @ $U_{\rm PN}$	P_{P}	W		0.64		

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal DC voltage (continuous)	$U_{ m PNDC}$	٧		4200		
Primary nominal AC RMS voltage (continuous)	$U_{\rm PNAC}$	V		4200		
Primary voltage, measuring range	U_{PM}	V	-6000		6000	
Measuring resistance	R_{M}	Ω	0			see derating on figure 1
Secondary current	I_{S}	mA		50		@ U_{PNDC}
DC supply voltage ==	U_{C}	V	±10.8	±12 ±24	±26.4	Tolerance ±10 % on Typ value
DC surrent consumption	,	A		30		@ $U_{\rm C}$ = ±24 V at $U_{\rm P}$ = 0 V
DC current consumption =	I_{c}	mA		40		@ $U_{\rm C}$ = ±15 V at $U_{\rm P}$ = 0 V
Power consumption U_p = 0 V @ U_c	P_{C}	W		1.44		@ U _C = ±24 V
Power consumption $U_{\rm p}$ = $U_{\rm PNDC}$ @ $U_{\rm C}$	P_{C}	W		2.64		@ U _C = ±24 V
Inrush current						NA (EN 50155)
Interruptions on power supply voltage class						NA (EN 50155)
Supply change-over class						NA (EN 50155)
Rise time of $U_{\rm C}$ (10 % 90 %)	t _{rise}	ms			100	
Total error	$\varepsilon_{\mathrm{tot}}$	%	-1		1	
Total error	$arepsilon_{ ext{tot}}$	%	-0.5		0.5	@ 25 °C 100 % tested in production
Temperature variation of $U_{\text{o}\text{E}}$ referred to primary	$U_{{\rm OE}T}$	V	-10.1		10.1	
			-8.4		8.4	@ 25 °C 85 °C
Electrical Offset voltage referred to primary	U_{OE}	\ \	-4.2		4.2	@ 25 °C 100 % tested in production
Sensitivity	S	μA/V		11.9		@ 25 °C
Sensitivity error	$\varepsilon_{\rm S}$	%	-0.3		0.3	@ 25 °C
Temperature variation of sensitivity error	$\varepsilon_{_{\mathbb{S}T}}$	%	-0.5		0.5	referred to 25 °C
Linearity error	$arepsilon_{L}$	% of $U_{\scriptscriptstyle{\mathrm{PN}}}$	-0.5		0.5	@ 25 °C ±6000 V range
RMS noise current 100 Hz 100 kHz referred to secondary	I_{no}	μA		30		@ 25 °C
Delay time @ 10 % of the final output value for $U_{\rm PN}$ step	t _{D 10}	μs		30		
Delay time @ 90 % of the final output value for $U_{\rm PN}$ step	t _{D 90}	μs		50	60	0 to 4200 V step, 6 kV/μs
Frequency bandwidth	BW	kHz		12.8		-3 dB
	<i>D</i> ,,			8		-1 dB
Start-up time	t _{start}	ms		190	250	
Resistance of primary	$R_{\rm P}$	МΩ		25.1		
Total primary power loss @ $U_{\rm PN}$	P_{P}	W		0.7		

Definition of typical, minimum and maximum values

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as well as values shown in "typical" graphs.

On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval.

Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %.

For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution.

Typical, maximal and minimal values are determined during the initial characterization of the product.

Typical performance characteristics

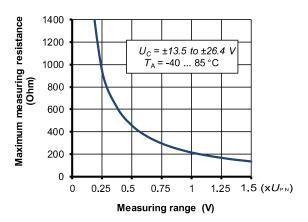


Figure 1: Maximum measuring resistance

$$R_{\text{M max}} = \min \left(\frac{0.02 \times U_{\text{PN}} \times (U_{\text{C}} - 1.4) \times 10^{3}}{U_{\text{P}}} - 25; \frac{0.24 \times U_{\text{PN}} \times 10^{3}}{U_{\text{P}}} - 25 \right) \Omega$$

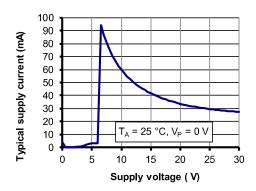


Figure 2: Supply current function of supply voltage

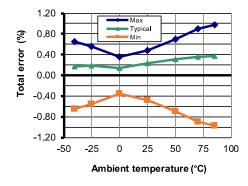


Figure 4: Total error in temperature

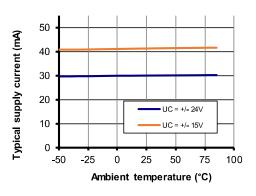


Figure 3: Supply current function of temperature

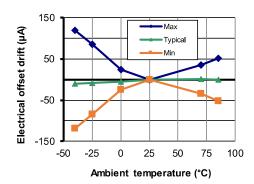
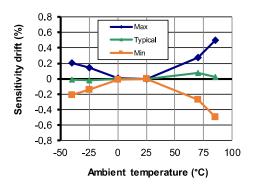
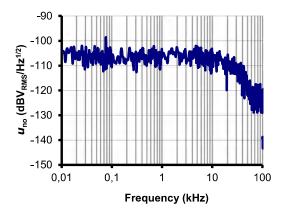



Figure 5: Electrical offset thermal drift


Typical performance characteristics

0.06 0.04 0.02 0.00

Figure 6: Sensitivity thermal drift

Figure 7: Typical linearity error at 25 °C

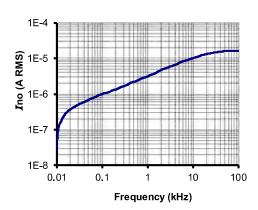


Figure 8: Typical output noise voltage spectral density $u_{\mbox{\tiny no}}$ referred to secondary with $R_{\mbox{\tiny M}}$ = 50 Ω

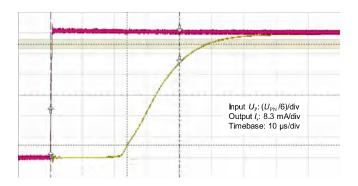
Figure 9: Typical total output RMS noise current I_{no} referred to secondary with R_{M} = 50 Ω

Figure 8 (output noise voltage spectral density) shows that there are no significant discrete frequencies in the output. Figure 9 confirms the absence of steps in the total output RMS noise current that would indicate discrete frequencies. To calculate the total output RMS noise in a frequency band f1 to f2, the formula is:

with $I_{n0}(f)$ read from figure 9 (typical, RMS value).

$$I_{\text{no}}(f_1 \text{ to } f_2) = \sqrt{I_{\text{no}}(f_2)^2 - I_{\text{no}}(f_1)^2}$$

Example:


What is the total output RMS noise from 100 to 1 kHz? Figure 9 gives $I_{po}(100 \text{ Hz}) = 1.0 \mu\text{A}$ and $I_{po}(1 \text{ kHz}) = 3.13 \mu\text{A}$.

$$\sqrt{(3.13 \times 10^{-6})^2 - (1.0 \times 10^{-6})^2} = 2.97 \,\mu\text{A}$$

Therefore, the total output RMS noise current is 2.97 µA.

Typical performance characteristics

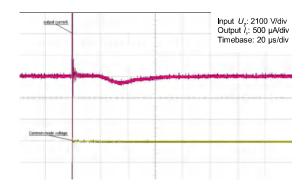


Figure 10: Typical step response (0 to $U_{\mbox{\tiny PN}}$)

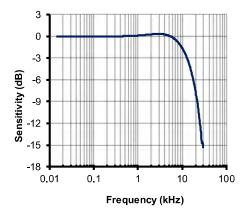


Figure 11: Detail of typical common mode perturbation (4200 V step with 6 kV/ μ s, $R_{\rm M}$ = 100 Ω)

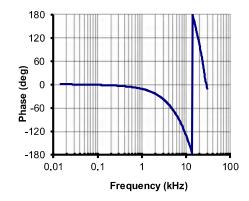


Figure 12: Sensitivity function of frequency

Figure 13: Phase shift function of frequency

Terms and definitions

Simplified transducer model

The static model of the transducer with current output at temperature $T_{\rm A}$ is:

$$I_{\rm S} = S \cdot U_{\rm P} \cdot (1 + \varepsilon)$$

In which (referred to primary):

$$\varepsilon \cdot U_{\mathsf{P}} = U_{\mathsf{O} \, \mathsf{E}} + U_{\mathsf{O} \, \mathsf{T}} + \varepsilon_{\mathsf{S}} \cdot U_{\mathsf{P}} + \varepsilon_{\mathsf{S} \, \mathsf{T}} \cdot U_{\mathsf{P}} + \varepsilon_{\mathsf{L}} (U_{\mathsf{P} \, \mathsf{max}}) \cdot U_{\mathsf{P} \, \mathsf{max}}$$

: primary voltage (V)

 $U_{\rm P} \\ U_{\rm P \, max}$: maximum primary voltage applied to the

transducer (V)

 $I_{\rm S}$: secondary current (A) : sensitivity of the transducer TCS: temperature coefficient of S

: ambient operating temperature (°C)

: electrical offset voltage (V) : temperature variation of $U_{\rm O\,E}$ (V) : sensitivity error at 25 °C

: thermal drift of S : linearity error for $U_{\mathsf{P}\,\mathsf{max}}$ $\varepsilon_{\rm L}(U_{\rm P\,max})$

This model is valid for primary voltage $U_{\scriptscriptstyle \rm P}$ between $-U_{\scriptscriptstyle \rm P}$ max and $+U_{\tiny D}$ max only.

This is the absolute maximum error. As all errors are independent, a more realistic way to calculate the error would be to use the following formula:

$$\varepsilon = \sqrt{\sum_{i=1}^{N} \varepsilon_i^2}$$

Total error referred to primary

The total error ε_{tot} is the error at $\pm U_{\text{PN}}$, relative to the rated value

It includes all errors mentioned above

- the electrical offset U_{OF}
- the sensitivity error ε_s
- the linearity error $\varepsilon_{\text{\tiny I}}$ (to $U_{\text{\tiny PN}}$).

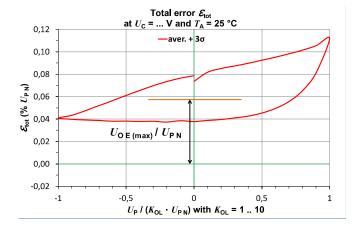
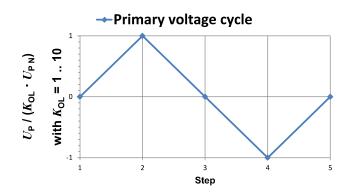



Figure 14: Total error ε_{tot}

Electrical offset referred to primary

K_{o L}: Overload factor

Figure 15: voltage cycle used to measure the electrical offset (transducer supplied)

Using the voltage cycle shown in previous figure, the electrical offset voltage U_{OF} is the residual output referred to primary when the input voltage is zero.

The temperature variation $U_{0,T}$ of the electrical offset voltage

$$U_{OE} = \frac{U_{P(3)} + U_{P(5)}}{2}$$

 $U_{
m O,F}$ is the variation of the electrical offset from 25 °C to the considered temperature.

$$U_{OT}(T) = U_{OE}(T) - U_{OE}(25^{\circ}C)$$

Sensitivity and linearity

To measure sensitivity and linearity, the primary voltage (DC) is cycled from 0 to $U_{\rm P}$, then to $-U_{\rm P}$ and back to 0 (equally spaced $U_p/10$ steps). The sensitivity S is defined as the slope of the linear regression line for a cycle between $\pm U_{\rm PN}$.

The linearity error $\varepsilon_{\rm L}$ is the maximum positive or negative difference between the measured points and the linear regression line, expressed in % of U_{PN} .

Delay times

The delay time $t_{\rm D\,10}$ @ 10 % and the delay time $t_{\rm D\,90}$ @ 90 % with respect to the primary are shown in the next figure. Both slightly depend on the primary current di/dt.

They are measured at nominal current.

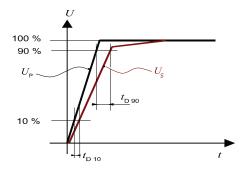
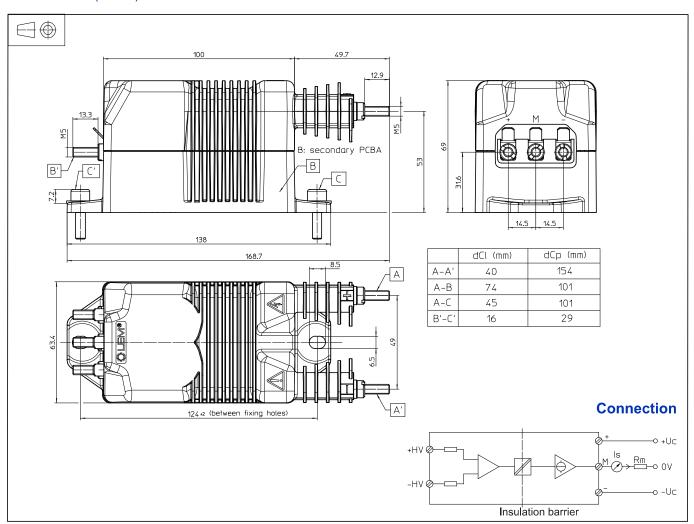



Figure 15: Delay time $t_{\rm D\,10}$ @ 10 % and delay time $t_{\rm D\,90}$ @ 90 %.

Dimensions (in mm)

Mechanical characteristics

General tolerance ±1 mm

Transducer fastening2 holes Ø 6.5 mm

2 M6 steel screws

Recommended fastening torque 5 N·m ±10 %

Connection of primary 2 M5 threaded studs

Recommended fastening torque 2.2 N·m ±10 %

Connection of secondary 3 M5 threaded studs

Recommended fastening torque 2.2 N·m ±10 %

Remarks

- $\bullet~~I_{\rm S}$ is positive when $U_{\rm HV^+}$ $U_{\rm HV^-}$ > 0 V.
- The secondary cables also have to be routed together all the way.
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: https://www.lem.com/en/file/3137/download/

Note: Additional information available on request.