PCI_PXI_USB 886X系列 高分辨率数据采集卡

产品使用手册 V6.01.01

1

■ 关于本手册

本手册为阿尔泰科技推出的 PCI、PXI、USB 三种总线的 886X 系列高分辨率数据采集卡的用户 手册,适用于 PCI8860、PCI8862、PCI8865、PCI8867、PXI8860、PXI8862、PXI8865、PXI8867、USB8860、 USB8862、USB8865、USB8867 型号,其中包括产品功能概述、设备特性、AI 功能的使用方法、产 品应用注意事项、校准及保修等。

► 为了方便阅读,下述将 PCI/PXI/USB_8860/ 8862 /8865 /8867 型号简称为 886X。

文档版本: V6.01.01

■ 选型指南

	型号	AI模拟量输入					
总线		通道	分辨率	采样速率	通道 配置	采样范围	IEPE 功能
	PCI8860	8路	24bit	4Hz~256KHz	差分	$\pm 10V$, $\pm 5V$, $\pm 2V$, $\pm 1V$	×
DCI	PCI8862	8路	24bit	4Hz~256KHz	伪差分	$\pm 10V$, $\pm 5V$, $\pm 2V$, $\pm 1V$	\checkmark
PCI	PCI8865	8路	24bit	4Hz~256KHz	差分	$\pm 10V$, $\pm 1V$, $\pm 100mV$	×
	PCI8867	8路	24bit	4Hz ~ 256KHz	伪差分	$\pm 10V$, $\pm 1V$, $\pm 100mV$	\checkmark
	PX18860	8路	24bit	4Hz~256KHz	差分	$\pm 10V$, $\pm 5V$, $\pm 2V$, $\pm 1V$	×
DIZI	PX18862	8路	24bit	4Hz~256KHz	伪差分	$\pm 10V$, $\pm 5V$, $\pm 2V$, $\pm 1V$	\checkmark
PAI	PXI8865	8路	24bit	4Hz~256KHz	差分	$\pm 10V$, $\pm 1V$, $\pm 100mV$	×
	PXI8867	8路	24bit	4Hz ~ 256KHz	伪差分	$\pm 10V$, $\pm 1V$, $\pm 100mV$	\checkmark
	USB8860	8路	24bit	4Hz~256KHz	差分	$\pm 10V$, $\pm 5V$, $\pm 2V$, $\pm 1V$	×
UCD	USB8862	8路	24bit	4Hz~256KHz	伪差分	$\pm 10V$, $\pm 5V$, $\pm 2V$, $\pm 1V$	\checkmark
028	USB8865	8路	24bit	4Hz~256KHz	差分	$\pm 10V$, $\pm 1V$, $\pm 100mV$	×
	USB8867	8路	24bit	4Hz ~ 256KHz	伪差分	$\pm 10V$, $\pm 1V$, $\pm 100mV$	\checkmark

目 录

关	于本书	手册	1
选	型指南	有	2
1 1	中中		6
1 1		J	
1.1	产品(包装内容	6
1.2	安装打	皆号	6
	1.2.1	注意事项	6
	1.2.2	应用软件	6
	1.2.3	软件安装指导	6
	1.2.4	硬件安装指导	7
1.3	设备打	接口定义	7
1.4	板卡伯	使用参数	7
2]	功能构	既述	8
2.1	产品	简介	8
2.2	系统	框图	8
2.3	规格	参数	9
	2.3.1	产品概述	9
	2.3.2	AI 模拟量输入	9
	2.3.3	相位匹配	.10
	2.3.4	噪声与采样率的关系	.10
	2.3.5	DIO 数字量输入输出	.10
	2.3.6	+5V 输出	. 11
	2.3.7	压电集成电路(IEPE)	. 11
	2.3.8	PXI886X 同步信号	. 11
	2.3.9	USB886X 外部供电	.12
	2.3.10	板卡功耗	.12
	2.3.11	设备配置	.12
	2.3.12	设备信息查询	.12
3 i	设备物	寺性	13

Contraction (Contraction)	RT chnology	
3.1	PCI886X 外形及尺寸图	13
3.2	PXI886X 外形及尺寸图	14
3.3	USB886X 外形及尺寸图	15
3.4	连接器定义	17
■ 47	AI 模拟量输入	19
4.1	AI 功能框图	19
4.2	AI 数据采集注意事项	19
	4.2.1 远离噪声源	19
	4.2.2 高质量的同轴电缆	20
4.3	AI 自动校准(CAL)	20
4.4	AI 信号连接	20
4.5	AI 数据存储顺序	21
	4.5.1 单通道	21
	4.5.2 多通道	21
4.6	AI 采集模式	21
	4.6.1 按需单点采样	21
	4.6.2 有限点采样	22
	4.6.3 连续采样	23
4.7	触发模式	23
	4.7.1 开始触发	23
	4.7.2 参考触发	25
	4.7.3 暂停触发	26
4.8	触发类型	27
	4.8.1 触发功能框图	27
	4.8.2 软件强制触发	27
	4.8.3 模拟触发	28
	4.8.4 数字触发	
5	数字量输入输出	31
5.1	DI/DO 数字量输入输出功能框图	
5.2	DI/DO 使用注意事项	
5.3	DI 数字量输入的连接方式	31
5.4	DO 数字量输出的连接方式	

6	多卡阿	司步	33
6.1	时钟(言号	33
	6.1.1	参考时钟	33
	6.1.2	采样时基	33
	6.1.3	同步脉冲	33
	6.1.4	开始触发	33
6.2	多卡	司步的实现方法	33
	6.2.1	主采样时钟时基同步	33
	6.2.2	外部参考时钟同步	34
7 j	产品(呆修	35
7.1	保修.		35
7.2	技术	支持与服务	35
7.3	返修注	主意事项	35

■ 1 快速上手

本章主要介绍初次使用 886X 需要了解和掌握的知识,以及需要的相关准备工作,可以帮助用户 熟悉 886X 使用流程,快速上手。

1.1 产品包装内容

打开 886X 板卡包装后,用户将会发现如下物品:

- 886X 板卡一个。
- 阿尔泰科技软件光盘一张,该光盘包括如下内容:
 1)、本公司所有产品驱动程序,用户可在文件夹下找到 ArtDAQ 软件安装包。
 2)、用户手册(pdf 格式电子版文档)。

1.2 安装指导

1.2.1 注意事项

1)、先用手触摸机箱的金属部分来移除身体所附的静电,也可使用接地腕带。

2)、取卡时只能握住卡的边缘或金属托架,不要触碰电子元件,防止芯片受到静电的危害。

3)、检查板卡上是否有明显的外部损伤如元件松动或损坏等。如果有明显损坏,请立即与销售人员联系,切勿将损坏的板卡安装至系统。

PCI、PXI 总线板卡不可以在系统带电的情况下插拔!

1.2.2 应用软件

用户在使用 886X 时,可以根据实际需要安装相关的应用开发环境,例如 Microsoft Visual Studio、 NI LabVIEW 等。

ArtDAQ 是北京阿尔泰科技发展有限公司采集设备的驱动程序及开发套件,用以实现从简单到复杂的数据采集任务,高效快速搭建测试系统。

- 支持大多数 ART 硬件设备。
- 支持的操作系统: Windows 10/8/7/XP, LabVIEW RT (Linux 的支持情况,请致电技术支持 咨询 400-860-3335)。
- 支持的编程语言和平台有: C/C++, LabVIEW 等。
- 提供 VC、C#、Labview 的编程范例程序, 在{ART Technology Directory\ArtDAQ\Sample}目 录中可以找到。
- 设备驱动提供的 dll,可以在 Windows 平台下的几乎任何编程环境中使用。

1.2.3 软件安装指导

6

在不同操作系统下安装 886X 的方法一致。

第一步:将产品包装中附带的光盘 插入光驱中,等待识别到光盘后,可查找到 ArtDAQ 软件安装包;如果您的硬件平台设备没有光驱,请从阿尔泰科技官网下载 ArtDAQ 软件安装包,链接地址: http://www.art-control.com/。

第二步:双击 ArtDAQ 软件安装包,进入安装向导,按照向导提示进行每一步安装即完成。

7

1.2.4 硬件安装指导

将 886X 正确安装在 PC 机中,安装成功后开机,系统会自动安装驱动,若未成功安装驱动按下 述方法操作。

1)、打开 DMC(设备管理配置工具)。

2)、选中要安装的设备,右击选择'更新驱动',按向导提示进行下一步安装即完成。

1.3 设备接口定义

886X 相关接口信息可以参见本手册《接口定义》章节。

1.4 板卡使用参数

- ◆ 工作温度范围: -20°C ~ 50°C
- ◆ 工作相对湿度范围: 10% ~ +90%RH (无结露)
- ◆ 存储相对湿度: 5% ~ +95% RH (无结露)
- ◆ 存储温度范围: -40°C ~ +70°C

■ 2 功能概述

信息社会的发展,在很大程度上取决于信息与信号处理技术的先进性。数字信号处理技术的出现 改变了信息与信号处理技术的整个面貌,而数据采集作为数字信号处理的必不可少的前期工作在整个 数字系统中起到关键性、乃至决定性的作用,其应用已经深入到信号处理的各个领域中。实时信号处 理、数字图像处理等领域对高速度、高精度数据采集卡的需求越来越大。ISA 总线由于其传输速度的 限制而逐渐被淘汰。我公司推出的 886X 高分辨率采集卡综合了国内外众多同类产品的优点,以其使 用的便捷、稳定的性能、极高的性价比,获得多家试用客户的一致好评,是一款真正具有可比性的产 品,也是您理想的选择。

2.1 产品简介

PCI/PXI/USB_886X 系列板卡是本公司推出的一系列高分辨率数据采集卡。该系列板卡提供 8 路 同步模拟输入通道,24bit 分辨率,采样速率高达 256KS/s,板载数字抗混叠滤波器,可有效降低高频 噪声并抑制频率混叠,适用于精密测量,并且提供了 16 路 DIO (8 路复用 PFI),以满足应用现场的 多样化需求;部分产品通道集成了独立的 IEPE 激励源,可实现加速度传感器及麦克风等相关的信号 调理。

2.2 系统框图

8

图 2-2-1 886X 系统框图示意

886X 的系统框图如图 2-2-1 所示,系统主要由前端模拟调理模块、ADC 模块、FPGA 模块组成。 前端模拟调理模块主要实现模拟输入信号在进入 AD 之前相关的调理功能,板载内部校准源用于板卡 通道的自校准。

2.3 规格参数

2.3.1 产品概述

产品型号	PCI886X	PXI886X	USB886X
总线类型	PCI 总线	PXI 总线	USB 总线
板卡尺寸	158.24mm(长) *106.68mm(宽)	160 mm(长) *100mm(宽)	详见尺寸图
操作系统	XP、Win7、Win8、Win10		

2.3.2 AI 模拟量输入

		AI 模拟量输入			
总线	型号	通道配置	耦合方式 (程控选择)	采样范围	IEPE 功能
	8860	差分	DC	$\pm 10V$, $\pm 5V$, $\pm 2V$, $\pm 1V$	×
DCI/DVI/USD	8862	伪差分 (50Ω)	DC/ AC	$\pm 10V$, $\pm 5V$, $\pm 2V$, $\pm 1V$	\checkmark
PCI/PXI/USB	8865	差分	DC	$\pm 10V$, $\pm 1V$, $\pm 100mV$	×
	8867	伪差分 (50Ω)	DC/ AC	$\pm 10V$, $\pm 1V$, $\pm 100mV$	\checkmark

其它共同参数:

通道数量	8 通道				
分辨率	24 bit	24 bit			
采样速率	4 Hz ~ 256 K	Ήz			
数据传输	直接内存访	问 (DMA),编程	₫ I/O		
	$\pm 10V: 0.00$	08%			
	$\pm 5V: 0.0$	1%			
增益误差	$\pm 2V: 0.02$	25%	Тур @ 25°С		
	$\pm 1V: 0.02$	5%			
	$\pm 100 \text{mV}: 0.02\%$		1		
偏移误差	1mV Typ (1mV Typ @ 25°C			
CMRR	80dB	80dB			
校准方式	软件自动校	软件自动校准			
采集模式	按需单点采	按需单点采样、有限点采样、连续采样			
存储器深度	4K 点 FIFO				
最高工作电压	±11.2V				
保护电压	$\pm 12V$				
触发模式	开始触发、	开始触发、参考触发、暂停触发			
	模拟触发	APFI	信号输入范围: ±10V		
触发源		AI通道			
	数字触发	PFI [7:0]	信号输入范围:标准 TTL 电平		
输入阻抗	lGΩ				

2.3.3 相位匹配

量程	相位匹配度
10 V	0.06°/Hz× <i>fin @fin=</i> 1KHz 典型值
100 mV	0.09°/Hz× <i>fin @fin</i> =1KHz 典型值

2.3.4 噪声与采样率的关系

2.3.5	DIO 数字量输入输出

17711610	16Line	Port0: 8 Line		
- 		Port1: 8 Line, 复	用 PFI0~7	
电气标准	TTL 兼容			
配置方式	程控 I/O 方向-	程控 I/O 方向与状态		
	声 中立	最大电压	5V	
松)四纪中亚	尚电半	最小电压	3V	
制入逻辑电干	化中亚	最大电压	0.8V	
	低电半	最小电压	0V	
	高电平	最大电压	5.1V @<1mA	
Source 电流输出		最小电压	4.46V @16.5mA	
逻辑电平	/त के ज	最大电压	0.1V	
	低电平	最小电压	0V	
	学中立	最大电压	5.1V	
Sink 电流输出	尚电半	最小电压	4.9V	
逻辑电平		最大电压	0.53V @16.5mA	
	低电半	最小电压	0V @<1mA	
最大输入范围	0V~5V			
下拉电阻	10KΩ			

*₩*ART Technology ■

单通道驱动能力	-20mA @Source 电流
(最大)	25mA @Sink 电流
过压保护	-5V~+10V
采样方式	仅支持软件(按需)单点采样

① 设备未上电时,请勿连接超过 3.3V 的外部电压至 DIO 通道,以及正常工作时勿长时间超出工作范围,以免损害设备的长期可靠性。
 ② 为降低板卡功耗,建议 DO 使用 Sink 方式。

② 乃降區做下功紀,建以 DO 使用 Sink

2.3.6 +5V 输出

输出电压	$+5.0V \pm 0.2V$
带载能力	200mA
负载调整率	3.3%
其他保护	过载后自动保护
软件开关	支持

板卡侦测到+5V 输出过载后自动关闭电源输出,1秒钟后重新打开,若仍有过载再次关闭1秒 钟,以此循坏,直至无过载。

2.3.7 压电集成电路(IEPE)

型号	8862、8867
电流输出	4mA ±10%
激励电压	24V

使用 IEPE 推荐使用伪差分配置方式。

2.3.8 PXI886X 同步信号

通道数	8 路 PXI_TRIG <07>/P3 1 路 PXI_STAR		
电气标准	TTL 兼容		
方向控制	PXI_TRIG 可独立配置为输入或输出 PXI_STAR 仅输入		
默认上电状态	输入		
	高电平	最大电压	5V
		最小电压	2V
输入逻辑电平		最大电压	0.8V
	低电平	最小电压	0V
松山四相古五	<u> </u>	最大电压	5V
输出逻辑电半	尚电平	最小电压	3.8V

	и н т	最大电压	0.44V
	低电平	最小电压	0V
最大输入范围	0~5V		
上拉电阻	20 ΚΩ		
单通道驱动能力	±24mA		
过压保护	5V		

2.3.9 USB886X 外部供电

输入电压	7V~24V (≥10W)
过流保护	1A
过压保护	26V±0.5V
其他保护	防反接
电源供电	仅外供电

2.3.10 板卡功耗

型号	PCI886X	PXI886X	USB886X
典型值 (W)	4	4	4
最大值 (W)	6	6	6

2.3.11 设备配置

上电状态	数字量配置	状态及方向
ID 号配置	物理 ID	及用户 PID

2.3.12 设备信息查询

	物理 ID
用尸信息	用户 PID
	产品序列号
/ 冏编亏	其它

Cart Technology

■ 3 设备特性

本章主要介绍 886X 相关的设备特性,主要包括板卡外形图、主要元件功能说明、接口定义,为 用户在使用过程中提供相关参考。

3.1 PCI886X 外形及尺寸图

图 3-1-1 PCI886X 板卡外形图

图 3-1-2 PCI886X 板卡尺寸图

CN1、CN2: 信号输入连接器 P1: RTSI 连接器

3.2 PXI886X 外形及尺寸图

图 3-2-1 PXI886X 板卡外形图

图 3-2-2 PXI886X 板卡尺寸图

CN1、CN2: 信号输入连接器

14

3.3 USB886X 外形及尺寸图

图 3-3-1 USB886X 板卡外形图

接口功能说明:

外部供电接口: DC 7~24V 10W

CN1、CN2: 信号输入连接器

LED1: PWR 红色指示灯

- 常亮表示电源正常
- 一直闪烁表示外部供电电压过高

RUN 绿色指示灯

- 常亮表示设备已准备好等待操作
- 闪烁表示设备正在被操作,有数据传输

RTSI BSU: 20Pin RTSI 同步触发连接器

•� : USB 接口

*₩*ART Technology

16

图 3-3-4 USB886X 板卡尺寸图

3.4 连接器定义

AIO+ 26 13 AIO-DGND 26 13 PO. 0 12 PO.2 12 AI1+ AGND 25 P0.1 25 11 DGND 11 AGND P0.3 24 AI 1-24 10 PO. 4 DGND 23 AI2+ 23 10 AI2-9 P0.6 9 AGND 22 AI3+ P0.5 22 8 AGND P0.7 21 8 DGND AI 3-21 7 7 DGND 20 P1.0\PFI0 AI4-AI4+ 20 6 P1.1\PFI1 19 6 P1.2\PFI2 AGND 19 AI5+5 DGND AI5- 18 5 AGND P1.3\PFI3 18 4 AI6-DGND 17 4 P1.4\PFI4 AI6+ 17 3 AI7+ P1.5\PFI5 16 3 P1.6\PFI6 AGND 16 2 DGND 2 AGND P1.7\PFI7 15 AI7-15 1 APFI DGND 14 1 +5Vout AGND 14 Π CN1 管脚定义 CN2 管脚定义

AI 模拟信号输入管脚、DIO 信号输入管脚,如图 3-3-1 所示,具体引脚定义如表 3-3-1 所示。

图 3-3-1 886X 接口定义

+	a a i	- 大ケ HLn テレムレ Jnr) ト
天	3-3-1.	一合 版 口 记 限 不
1	551.	

信号名称	管脚特性	管脚功能概述
AI0+~AI7+; AI0-~AI7-	Input	8路AI模拟量输入管脚。 伪差分输入: AI0+ ~ AI7+ 作为AI+ 接入, AI0- ~ AI7- 作为AI- 接入。
APFI	Input	模拟触发信号输入接口
P0.0~P0.7	Input/Output	Port0端口8路数字量 输入、输出
DEIO- DEIZ	It/Octoret	Port1端口8路数字量 输入、输出
PFI0~PFI7	Input/Output	数字触发信号输入
+5Vout	Power	+5V电源输出
AGND	GND	模拟信号地
DGND	GND	数字信号地

P1: RTSI 的 Pinout 如图 3-3-2、图 3-3-3 所示,具体 Pinout 引脚如表 3-3-2 所示

图 3-3-2 PCI886X RTSI 的 Pinout 图

图 3-3-3 USB886X RTSI 的 Pinout 图

表	3-3-2:

RTSI 信号	Pinout
RTSI_0	1
RTSI_1	3
RTSI_2	5
RTSI_3	7
RTSI_4	9
RTSI_5	11
RTSI_6	13
RTSI_7	15
RTSI_8	17
RTSI_9 (RTSI_10M)	19
GND	2、4、6、8、10、12、14、 16、18、20

4 AI 模拟量输入

本章主要介绍 886X 模拟量输入的相关性质,主要包括 AI 模拟量输入功能框图、AI 校准、信号 连接、AI 采集、AI 触发等,为用户在使用过程中提供相关参考。

4.1 AI 功能框图

886X 的模拟输入部分提供 8 路同步采集通道,输入前端采用模拟开关进行输入信号和内部校准 源信号间的切换。每个模拟输入通道还包括一个低通模拟滤波器,可以在高频分量到达 ADC 之前将 其在模拟通路中滤除,以减少可能存在的频率混叠。

图 4-1-2 8862/8865 模拟输入功能框图

4.2 AI 数据采集注意事项

电磁干扰会严重影响886X的测量精度。为保证输入通道的噪声性能,有效降低串扰、环境噪声等对采集系统造成的影响,用户在测量现场连接待测信号源与设备时需要注意以下几点,以确保采集系统的测量精度。

4.2.1 远离噪声源

在信号传输至886X的过程中,应尽量使连接线缆远离附近的噪声源,比如荧光灯、开关电源、 镇流器、变压器、焊接设备、变频器、电动机等,若必须通过磁场干扰较强的设备附近,需要将 信号电缆穿过特定金属管道,以屏蔽存在的磁场干扰。同时,禁止将连接线缆与电源线缆共用一

个金属管道。另外,应将设备信号电缆尽可能远离大电流或高电压的传输线,或将该传输线与设备信号电缆垂直放置,避免并行放置。

4.2.2 高质量的同轴电缆

选用高质量的同轴电缆可以将比如串扰、传输线效应、噪声等会降低系统精度的影响降到最低。在连接 886X 时,建议使用具有良好屏蔽效果的同轴电缆。另外,在连接电缆时还需要保证 线缆不存在严重形变等。

4.3 AI 自动校准(CAL)

886X 模拟量输入校准方式为 AI 软件自动校准。AI 软件自动校准能在不使用任何外部信号、参考电压或测量设备的情况下,通过 AI 校准软件就能测量并校准偏移误差和增益误差。

产品出厂时已经校准,校准常量被保存在固定的存储区域。

由于误差会随着时间和温度变化,建议用户在外界环境改变后,将板卡在此环境下预热 15 分钟 后再执行设备校准。

三/ ②在 AI 校准开始前,请至少将采集卡预热 15 分钟,且自动校准时,采集卡不要连接任何外部信号,即直接将连接到板卡接口的信号线拔下即可。

4.4 AI 信号连接

信号源分为:浮接信号源、接地信号源

输入信号的通道配置: 8860 / 8865 差分模式(Differential)

8862 / 8867 伪差分(Pseudodifferential)。

如果信号源是浮动的。伪差分配置从负极输入到地通过 50 Ω 的电阻,在浮动源和设备之间提供 接地参考;否则,浮动的信号源会在设备的共模电压范围之外漂移导致采集错误。

如果信号源接地,在接地信号源上使用伪差分输入配置要创建多个接地参考点,这种情况可能会 产生接地环路电流,它可能会引入误差或噪声进入测量,虽然负输入和接地之间的接入 50 Ω 电阻, 这些误差减小到可忽略不计,但结果可能因系统设置的不同而有所不同。

模拟信号 接地连接方式	浮接信号源	接地信号源
	 含义: 浮接信号源是指没有与建筑物的接地系统连接,但是有一个隔离参考点的信号源。 ◆ 变压器、热电偶; ◆ 电池设备; ◆ 拥有隔离输出的仪器或者设备 	 含义:接地信号源是指与地系统连接的信号源,即它本身内部地和建筑物的接地系统是连接的。 ◆ 接入建筑供电系统的仪器和设备的非隔离输出

表 4-4-2: 模拟量输入信号连接概述

4.5 AI 数据存储顺序

4.5.1 单通道

当采样通道总数量(nSampChanCount)等于 1 时,通道组内只有一个通道配置信息,即为单通 道采集。

4.5.2 多通道

当采样通道总数量大于1时,通道组内有多个通道配置信息,则为多通道采集。 如果用户使能0、1、2通道,则数据排列方式:

通道0数据0、通道1数据0、通道2数据0

通道0数据1、通道1数据1、通道2数据1

通道0数据2、通道1数据2、通道2数据2

4.6 AI 采集模式

.....

该采集卡的 AI 采集模式有按需单点采样、有限点采样、连续采样。

4.6.1 按需单点采样

按需单点采样可简单、方便的实现各通道单个点的采样,如图 4-6-1 所示。

按需单点采样功能是指用户根据需求,随时可以获取各个通道一个采样点的功能。该功能主要针 对简单采样或采样实时性要求较高、数据量很少且采样时间不确定的应用中。采集实时性比较高,可 方便的用于 PID, PLC 等实时的快速伺服闭环控制系统等场合。用户在每发出单点的读命令 (AI_ReadAnalog()或 AI_ReadBinary())后,设备快速的完成一次采集,各通道采集一个点,之后通过 PCI/PXI 总线将采集的 AI 数据迅速的传给 PC 机。

图4-6-1 按需单点采集

在按需单点采样模式下,AI 启动并被触发后,以AI 最大采样频率作为转换时钟,每通道同时采 集一个点,数据采集完成后将其传输到 PC 机完成一次单点采样。

在按需单点采样下,AI转换频率受控于AI最大采样频率,而AI的采样速率则受制于用户的 单点读命令。

4.6.2 有限点采样

有限点采样功能是指 AI 在采样过程中,以设置的采样速率扫描各采集通道,采集过程中不停顿, 每通道各采集预设采样长度(AIParam.nSampsPerChan)后自动停止采集的方式。

有限点采样用在己知采样总点数或采样总时间的采样任务中,尤其是用在带有触发的采样任务中。例如:需要在触发信号开始之后采集2秒钟长度的数据,使用有限点采样方式可以很方便的实现此需求。使用时,需要指定每通道的采样长度,或将需要采集的时间根据采样速率转换为每通道的采样长度,比如当每个通道需采集N个数据(nSampsPerChan=N),采样方式如图 4-6-2。

在有限点采样模式下,AI 启动后等待触发事件,被触发后,以预设的时钟(图 4-6-2)作为 AI 采样时钟,按照预设的通道 AI0、AI1、AI2 同步采集,每通道各采集 N 个数据完成后,数据通过 PCI/PXI 总线传输到 PC 机,至此完成一次有限点采集。若再次启动 AI 采集,等待触发事件,重复上述动作 直至停止采集。

有限点采样模式下,AI转换频率为设置的内时钟频率(由参数 fSampleRate 指定)。

4.6.3 连续采样

连续采样功能是指 AI 在采样过程中每相邻两个采样点的时间相等,采集过程中不停顿,连续不间断的采集数据,直到用户主动停止采集任务。采样方式如图 4-6-3 所示。

∲°ART Technology

23

图4-6-3 连续采样

在连续采样模式下,AI启动并开始触发后,以预设的时钟(图 4-6-3)作为AI采样时钟,AI0、AI1、AI2同步采集,直到用户停止AI采集。

在内时钟连续采样模式下, AI 的采样速率由参数 fSampleRate 指定。

4.7 触发模式

886X依据用户不同的需求,包含了开始触发、参考触发、暂停触发 三种触发模式。

4.7.1 开始触发

开始触发是根据触发源信号的变化特征来触发 AD 采集的,即利用触发源信号的边沿信号作为触发条件。

开始触发的类型可分为:无触发(软件触发)、模拟边沿、模拟边沿迟滞触发、模拟窗、数字边沿。如图 4-7-1 所示。

以数字边沿触发-下降沿触发为例来说明,具体过程如图 4-7-2 所示。其他不再陈述。

Cart Technology	
AI采集任务	
数字触发信号	
触发	
ADC转换时钟	

当触发方向选择下降沿触发连续采集时,开始采集任务,AI并不立刻采集数据,当DTR 触发源 信号从高电平变为低电平时,即数字触发源信号出现下降沿时,AI 立刻开始采集数据,直到此次采 集任务结束或者用户点击"停止采集任务"按钮时停止。

4.7.1.1 硬件延时触发

硬件延时触发是隶属于开始触发中的一种触发功能。当延迟时间为0时,进行开始触发任务,当 延迟时间大于0时,进行开始触发的硬件延时触发任务。触发方式如图4-7-3所示。

图4-7-3 硬件延时触发方式

当延迟点数大于 0 时,886X 进行硬件延时触发采集,使用硬件延时触发可采集触发事件发生后 延时 nDelaySamps 个数据之后的 nSampsPerChan 个数据。

4.7.1.2 重触发

重触发是隶属于开始触发中的一种触发功能。该触发只在有限点采样时有效。

如图4-7-5所示当延迟时间为0时,触发事件发生时采集特定长度数据后停止,等待下一个触发信号。当延迟时间大于0时,触发信号发生时,延迟特定时间后采集特定长度的数据,停止采集等待下一个触发信号。

图4-7-2 数字触发--下降沿触发

图 4-7-5 AI 重触发

以 AI 采集的数字边沿触发-上升沿触发为例来说明无硬件延时,具体过程如图 4-7-6 所示。其他 不再陈述。

图 4-7-6 重触发

使用带延时的开始触发和硬件延时触发可以采集多次触发事件后的数据。如图 4-7-6 开始采集任务,第一个触发事件发生后采集特定长度数据,停止采集等待下一个触发事件直至停止采集任务。(重 复触发信号发生在采集未完成前是无效的)

4.7.2 参考触发

参考触发是有限点采样任务下,触发前采集一批数据的触发方式。以 AI 为例,比如,设置有限 点总长度为 1000 个点,触发前采集 400 个点,则这 1000 个点的数据中,相对触发位置而言,触发前 有 400 个点,触发后有 600 个点。

参考触发的类型可分为:无触发(软件触发)、模拟边沿、模拟边沿迟滞触发、模拟窗、数字边沿。如图 4-7-7。

图 4-7-7 参考触发分类

图 4-7-8 参考触发

如图 4-7-8 所示。使用参考触发可以在有限点采样任务下,在触发信号前采集特定长度的数据。 在开始采集任务时开始采集数据,在满足触发条件有限点采集完成后自动停止采集。

在预先设定的触发前采样点数未采集完成前所发生的触发事件是无效的。

4.7.3 暂停触发

暂停触发是在连续采样下,根据触发源信号的电平特征来停止 AD 采集,即利用触发源信号的电 平信号作为触发条件。

暂停触发的类型可分为:无触发(软件触发)、模拟电平、模拟迟滞电平、模拟窗、数字电平。 如图 4-7-9。

图 4-7-9 暂停触发分类

以数字电平-高电平触发为例来说明,具体过程如图 4-7-10 所示。低电平触发不再陈述。

ent and a construction of the construction of

当触发方向选择高电平暂停时,点击"开始采集"按钮,AD并不立刻采集数据,当DTR 触发源 信号为低电平时,AD 立刻采集数据,当DTR 触发源信号为高电平时,AD 停止采集,以此重复。即 只在 DTR 触发源信号为低电平时采集数据。

4.8 触发类型

4.8.1 触发功能框图

886X 支持软件触发、模拟边沿触发、模拟窗触发、数字边沿触发。各种触发方式可通过软件配置。

图 4-8-1 AI 触发功能框图

当用户使能通道模拟触发、数字触发、软件触发时,各触发信号满足触发条件即可生效,各 医 触发为或的关系。

理想中的模拟触发信号和数字触发信号是没有抖动的。但实际中的模拟触发信号和数字触发 信号会有很大的抖动,使用触发灵敏度(AIParam. nTriggerSens)可以很好的抑制抖动。如下图 4-8-2所示:

图 4-8-2 触发灵敏度

4.8.2 软件强制触发

软件强制触发等同于外部数字触发和模拟触发。它的主要作用在于当启动任务后无法及时等到外部触发,用户随时可以发出软件触发以强制设备立即正常采样一次。也或者用户无须外部触发情况下时就要完成采样任务时,可以选择执行软件强制触发(AI_SendSoftTrig())动作。如图 4-8-3 所示。

图4-8-3 AI软件强制触发

4.8.3 模拟触发4.8.3.1 模拟触发连接方法

图4-8-4 模拟触发连接方法

王/ 模拟触发通道的选择,模拟触发通道需为采样通道中的任一通道。

4.8.3.2 模拟边沿触发功能

模拟边沿触发是将变化的模拟信号作为触发源。该触发源信号通过模拟外触发输入管脚 APFI 或者 AI 通道(AI0~AI7)接入,与预设触发电平信号(fTriggerLevel)进入比较器进行高速比较。比较器输出高低电平来触发 AI 采集,如图 4-8-5 所示。

图4-8-5 比较器

模拟边沿触发是根据触发源信号相对于触发电平的变化特征来触发 AI 采集的。即利用模拟比较 器输出结果的边沿信号作为触发条件。

模拟边沿触发方向分为:下降沿触发、上升沿触发。

以模拟边沿触发的下降沿触发为例来说明,具体过程如图 4-8-6 所示。模拟边沿触发的上升沿触发不再陈述。

图4-8-6 模拟边沿触发--下降沿触发

当触发方向选择下降沿触发连续采集时,即比较器输出变为负时为有效的触发电平。点击"开始 采集任务"按钮,AI并不立刻采集数据,当模拟边沿触发源信号从大于触发电平变化至小于触发电平 时,触发信号变为低电平,AI 立刻开始采集数据,直到此次采集任务结束或者点击"停止采集任务" 按钮时停止。

4.8.3.3 模拟边沿迟滞触发功能

迟滞电平参数的加入使触发前输入信号必须经过高于或低于触发电平,提高了识别触发条件的准确性;常用于因信号产生噪声或抖动而导致的误触发,减少因误触发导致的设备故障。

模拟边沿迟滞触发方向分为:上升沿迟滞触发、下降沿迟滞触发。

当选择模拟边沿迟滞上升沿触发,设置好触发电平与迟滞电平参数,内部生成两个阈值电压,高 阈值是触发电平,低阈值为触发电平减去迟滞电平;触发检测电路内部高速模拟对比事件信号,信号 必须首先低于低阈值,然后高于高阈值,才能达到触发条件,开始触发,直到信号返回到低阈值以下, 如图 4-8-7 所示。

图4-8-7 模拟边沿迟滞触发—上升沿

当选择模拟边沿迟滞下降沿触发,设置好触发电平与迟滞电平参数,内部生成两个阈值电压,高 阈值是触发电平加上迟滞电平,低阈值为触发电平;触发检测电路内部高速模拟对比事件信号,信号 必须首先高于高阈值,然后低于低阈值,才能达到触发条件,开始触发,直到信号返回到高阈值以上, 如图 4-8-8 所示。

图4-8-8 模拟边沿迟滞触发—下降沿

4.8.3.4 模拟窗触发功能

模拟窗触发是将变化的模拟信号规定到一定范围内作为触发源。该触发源信号通过模拟输入管脚接入,与预设触发电平信号(fTriggerLevel)进入比较器进行高速比较。比较器输出高低电平来触发AI采集。

模拟窗触发是根据触发源信号相对于触发电平的变化特征来触发 AI 采集的。即利用模拟比较器 输出结果的边沿信号作为触发条件。

模拟窗触发方向分为:出窗、入窗。

以模拟窗触发的入窗为例来说明,具体过程如图 4-8-8 所示。模拟触发的出窗不再陈述。

图4-8-8 模拟窗触发--入窗

当触发方向选择入窗时,即比较器的输出选择会在窗顶部与窗底部之间的电平为高电平。点击"开始采集任务"按钮,AI并不立刻采集数据,当模拟触发源信号进入窗的电压范围时,AI立刻开始采集数据,直到此次采集任务结束或者用户点击"停止采集任务"按钮时停止。

4.8.4 数字触发

4.8.4.1 数字触发连接方法

图4-8-9 数字触发连接方法

4.8.4.2 数字边沿触发功能

数字边沿触发是根据触发源信号的变化特征来触发 AI 采集的。即利用触发源信号的边沿信号作为触发条件。

数字边沿触发方向分为:下降沿触发、上升沿触发。

以数字边沿触发的下降沿触发为例来说明,具体过程如图 4-8-10 所示。数字边沿触发的上升沿触发不再陈述。

图4-8-10 数字边沿触发--下降沿触发

当触发方向选择下降沿触发连续采集时,开始采集任务,AI并不立刻采集数据,当数字边沿触发源信号从高电平变为低电平时,即数字边沿触发源信号出现下降沿时,AI立刻开始采集数据,直到此次采集任务结束或者用户点击"停止采集任务"按钮时停止。

■ 5 数字量输入输出

本章主要介绍 886X 数字量输入输出的相关性质,主要包括数字量输入输出功能框图、信号连接等,为用户在使用 886X 过程中提供相关参考。

5.1 DI/DO 数字量输入输出功能框图

886X 的数字量输入输出均为静态 I/O,其中 Port0 的每个端子可做输入输出,用户任意配置。Port1 的每个端子不但都可以作为输入或输出,用户可任意配置,也可作为复用功能控制。

图5-1-1 DIO功能框图

输入输出电路保护: 886X 的所有数字输入输出接口均具备电路保护功能,以避免设备在过压、 静电释放的情况下遭到损坏。

5.2 DI/DO 使用注意事项

DIO 使用中,为最大限度降低损坏设备的风险,请遵循以下准则:

- ▶ 如果将 PFI 或 DIO 配置为输出状态,请勿将其连接到任何外部信号源、接地信号或电源。
- 如果将 PFI 或 DIO 配置为输出状态,请了解连接到这些信号的负载的电流要求。不要超过 设备指定的电流输出限制;本公司为需要高电流驱动的数字应用提供了多种解决方案,例如 图 5-4-3 所示方案用以实现驱动 24V 继电器。
- ▶ 如果将 PFI 或 DIO 配置为输入状态,使用时外接电压请勿超出其正常工作范围。
- ▶ 像对待任何静电敏感设备一样对待 DAQ 设备。在操作时,请始终将自己和设备正确接地。

5.3 DI 数字量输入的连接方式

31

₽[®]ART Technology

用户若将超出最大数字输入电压范围的信号连接至板卡会造成数据采集失真甚至设备损坏, 由此造成的损坏本公司不承担任何责任。

5.4 DO 数字量输出的连接方式

为降低板卡功耗,建议 DO 使用 Sink 方式。

当用户需驱动高电压或大电流设备时(比如 24V 继电器),需要用户自行设计外围驱动电路,可使用三极管驱动方式,如图 5-4-3, $Ic \approx VCC/R_L$ (R_L 为继电器内阻),用户使用时一定要注意 Ic要小于三极管 VT 的最大集电极电流。

图 5-4-3 DO 数字量控制继电器电路

6 多卡同步

6.1 时钟信号

6.1.1 参考时钟

参考时钟是指外部 10M 时钟,该信号在 PCI、USB 总线设备的 RTSI_9 管脚,该信号可通过配置 时钟管理电路进入 DDS,以生成 ADC 转换所用的过采样时钟。

PXI 总线设备则是采用 PXI 10M 背板时钟作为参考时钟。

6.1.2 采样时基

采样时基是用于 886X 上产生过采样的定时信号。单个 886X 设备上的所有转换器共享一个公共的采样时基。当同步多个 886X 设备时,每个设备必须共享一个公共的采样时基使得多卡的相位对齐。

6.1.3 同步脉冲

同步脉冲为板卡导出的一个脉冲信号,脉冲宽度可配置,所有设备收到该信号后,对 DDS、ADC、 DAC 进行复位,以实现过采样时钟的相位对齐。

6.1.4 开始触发

开始触发是根据触发源信号的变化特征来触发 AD 采集的,多卡同步时,此信号为所有设备提供 同时获取或生成数据的事件。

王, 共享的"公共采样时钟": 主卡产生"采样时基",并路由到所有从卡。

6.2 多卡同步的实现方法

实现 886X 多卡同步有两种方法: 主采样时钟时基同步、外部参考时钟同步。

6.2.1 主采样时钟时基同步

系统中所有的同步设备采用 RTSI 总线电缆连接,主采样时钟时基同步:主设备输出它的主采样时钟时基信号给系统中所有的从设备。使用同步脉冲信号,对系统中所有设备的过采样时钟进行相位对齐。最后发送共享的开始触发信号,使每个设备在同一时刻开始获取和生成事件。

设备同步的设置步骤:

- 1. 选择任意设备作为主设备,导出的主采样时钟时基信号并路由到所有的从设备上,使所有设备的 ADC、DAC 拥有相同的"过采样时钟"(默认是 RTSI[8])。
- 2. 主设备从 RTSI0~7 的任意通道导出同步脉冲信号到所有的从设备上,使所有设备的 ADC、DAC 同时复位并对所有 ADC、DAC 上的过采样时钟进行相位对齐。
- 3. 任选一个设备,从 RTSI0~7 导出它的开始触发信号。
- 启动采样任务或生成任务时,先启动所有接收开始触发信号的设备,最后再启动导出开始触发信号的设备,使得系统中的所有设备可以同时获取和生成数据。

主从卡级联方式多卡同步配置参数:

	主卡参数配置	从卡参数配置
参考时钟选择	LOCAL	
主采样时钟时基选择	LOCAL	RTSI[8]

主采样时基输出使能	是	否		
触发源选择	软件强制触发、数字触发、模拟触发	与主卡触发信号输出端口保持一致		
触发信号输出	是	否		
同步脉冲输出使能	是	否		

此方法仅适用于安装了时序卡的 PXI 机箱。

6.2.2 外部参考时钟同步

PCI、USB 设备外部参考时钟信号是由 RTSI[9]输入的,频率为 10MHz 的 TTL 信号。

PXI设备外部参考时钟信号是由工控机背板提供的PXI_10M时钟信号。

设备同步的设置步骤:

- 1. 为所有设备提供相同的外部参考时钟信号,使所有 ADC、DAC 拥有相同的"过采样时钟"。(默 认是 RTSI_9)
- 2. 主设备从 RTSI0~7 的任意通道导出同步脉冲信号到所有的从设备上,使所有设备的 ADC、DAC 同时复位并对所有 ADC、DAC 上的过采样时钟进行相位对齐。
- 3. 任选一个设备,从 RTSI0~7 导出它的开始触发信号。
- 启动采样任务或生成任务时,先启动所有接收开始触发信号的设备,最后再启动导出开始触发信号的设备,使得系统中的所有设备可以同时获取和生成数据。

主从卡级联方式多卡同步配置参数:

	主卡参数配置	从卡参数配置
参考时钟选择	RTSI[9]/ PXI_10M	RTSI[9]/ PXI_10M
主采样时钟时基选择	LOCAL	LOCAL
主采样时基输出使能	否	否
触发源选择	软件强制触发、数字触发、模拟触发	与主卡触发信号输出端口保持一致
触发信号输出	是	否
同步脉冲输出使能	是	否

■ 7 产品保修

7.1 保修

产品自出厂之日起,两年内用户凡遵守运输、贮存和使用规则,而质量低于产品标准者公司免费 修理。

7.2 技术支持与服务

如果用户认为产品出现故障,请遵循以下步骤:

1)、描述问题现象。

2)、收集所遇问题的信息。

如:硬件版本号、软件安装包版本号、用户手册版本号、物理连接、软件界面设置、操作 系统、电脑屏幕上不正常信息、其他信息等。

硬件版本号: 板卡上的版本号, 如 D5088600-00。

软件安装包版本号:安装软件时出现的版本号或在"开始"菜单 → 所有程序 → 阿尔泰测 控演示系统 → 886X 中查询。

用户手册版本号:在用户手册中关于本手册中查找,如 V6.00.01。

3)、打电话给供货商,描述故障问题。

4)、如果用户的产品被诊断为发生故障,本公司会尽快解决。

7.3 返修注意事项

在公司售出的产品包装中,用户将会找到该产品和这本说明书,同时还有产品质保卡。产品质保 卡请用户务必妥善保存,当该产品出现问题需要维修时,请用户将产品质保卡、用户问题描述单同产 品一起寄回本公司。

阿尔泰科技

服务热线:400-860-3335 网址:www.art-control.com