

中华人民共和国国家标准

GB/T 15651—1995 **IEC** 747-5—1992

半导体器件 分立器件和集成电路 第5部分:光电子器件

Semiconductor devices

Discrete devices and integrated circuits

Part 5: Optoelectronic devices

1995-07-24 发布

1996-04-01 实施

目 次

第 章 总则

1					
2	范围		(1)
		第			
1	物理	概念	(2)
1. 1	[(1	电磁)辐射(IEV 845-01-01) ····································	(2)
1.2	2 光	:学辐射(IEV 845-01-02) ····································	(2)
1.3	3 耳	见光辐射(IEV 845-01-03) ····································	(2)
1.4	4 红	外辐射(IEV 845-01-04) ····································	(2)
1.5	茅	外辐射(IEV 845-01-05) ····································	(2)
1.6	5 光	(IEV 845-01-06)	(2)
1.7		:电效应(根据 IEV 845-05-33:光电探测器)			
2	器件	·类型 ·······	(2)
2. 1	l 半	·导体光电子器件 ······	(2)
2. 2		导体光发射器件			
2. 3		·导体光电子显示器件 ····································			
2. 4		·导体激光器 ·······			
2. 5		:光二极管(LED)			
2. 6		[外发射二极管(IRED)			
2.7		导体光敏器件			
2.8		导体光电探测器			
2. 9		导体光敏电阻,光导元件(IEV 845-05-37) ·······			
2. 1		光电元件,光伏电池(IEV 845-05-38) ·······			
2.]		光电二极管(IEV 845-05-39) ·······			
2.		雪崩光电二极管(IEV 845-05-40)			
2.		光电晶体管			
2.		光敏闸流管			
2. 1		光耦合器			
3	一般	大术语	(3)
3. 3		······································			
3. 2		半导体光电子器件)光学窗口			
		光学)涂层(IEV-731-02-05) ·······			
4	与额	定值和特性有关的术语	(7)
		般术语			
4. 2	? 光	:发射器件	(Q)

$_4.$		(14)
4.	4 光耦合器	(16)
5	文字符号	$(17)^{}$
	第Ⅲ章 基本额定值和特性	
	第1节 发光二极管	
	为工 [
()	用于光纤系统或子系统的器件在第7节叙述)	
1	类型	
2	半导体材料	
3	颜色	(17)
4	外形与封装细节	(17)
5	在整个工作温度范围内的极限值(绝对最大值)(除非另有规定)	(18)
6	光电特性	(18)
7	补充资料	(18)
	第 2 节 红外发射二极管	
(,	用于光纤系统或子系统的红外发射二极管将在第7节叙述)	
1	类型	(18)
2	半导体材料	(19)
3	外形与封装细节	
4	EE 1 11 mg/st (C EE) 41/4 Ms (Ms 12 Ms	(19)
5	光电特性	
6	补充资料·······	(19)
	第3节光电二极管	
(用于光纤系统或子系统的除外)	
1	X.	(20)
2	1 4 11 (4) 1	
3	: 1: 6	
4		
5		
6	补充资料	(21)
	第 4 节 光电晶体管	
	WILL WIRE	
(用于光纤系统或子系统的除外)	
1	· -	
2		
3		
4	A Land A Land Control of the Control	
5	在整个工作温度范围内的极限值(绝对最大值)(除非另有规定)	(21)
6		
7	补充资料	(22)

第5节 光耦合器(晶体管输出)

1	类型	
2	半导体材料	(22)
3	输出晶体管的极性	(23)
4	外形与封装细节	
5	在整个工作温度范围内的极限值(绝对最大值)(除非另有规定)	(23)
6	光电特性	(24)
7	补充资料	(25)
	第6节 激光二极管	
1	类型	(25)
2	半导体	(25)
3	外形与封装细节	(25)
4	在整个工作温度范围内的极限值(绝对最大值)(除非另有规定)	(25)
5	光电特性····································	(26)
6	补充资料	(27)
	第7节 用于光纤系统或子系统的发光二 <mark>极管</mark> 和红外发射二极管	
1	类型	(27)
2	半导体材料	(27)
3	外形与封装细节	(27)
4	在整个工作温度范围内的极限值(绝对 <mark>最大</mark> 值)(除非另有规定)····································	
5	光电特性····································	(28)
6	光电特性····································	(29)
	第8节 带尾纤的激光器组件	
1	类型	(30)
2	** ** <t< td=""><td></td></t<>	
3	A section of the sect	
4	在整个工作温度范围内的极限值(绝对最大值)(除非另有规定)	
5	光电特性	
6	补充资料	
7	危害性····································	
		(00)
	第9节 用于光纤系统或子系统的 PIN 光电二极管	
1	类型	
2	半导体材料	
3	外形与封装细节	(34)
4	在整个工作温度范围内的极限值(绝对最大值)(除非另有规定)	
5	光电特性	
6	补充资料	(35)

第 10 节 带或不带尾纤的雪崩光电二极管(APDs)

1	类型	(35)
2	半导体	···· (35)
3	外形与封装细节	···· (35)
4	在整个工作温度范围内的极限值(绝对最大值)(除非另有规定)	···· (35)
5	光电特性	(36)
6	补充资料·······	(36)
	第 № 章 测试方法	
1	半导体发射器件测试方法	
1.	A STATE OF THE STA	
1.		
1.	The state of the s	
	电流	
1.	4 峰值发射波长(λ _p),光谱辐射带宽(Δλ)和纵模数(n _m) ····································	••• (39)
1.	5 带或不带尾纤的红外发射二极管和发光二极管的开关时间	••• (42)
1.	6 带或不带尾纤的发光二极管(LED)、红外发射二极管(IRED)和激光二极管的小信号截止	
	频率 f _c	••• (43)
1.	The state of the s	••• (44)
1.	The state of the s	
	强度	
1.		
	10 带或不带尾纤的激光二极管的开关时间 ····································	
1.	11 光发射器件的半强度角和角偏差	
1.	12 带或不带尾纤的发光二极管、红外发射二极管、激光二极管和激光器组件的载流子与噪	
	比	(01)
	13 带或不带尾纤的发光二极管、红外发射二极管、激光二极管和激光器组件的 S_{11} 参数 ·····	
	14 带尾纤、带或不带致冷器的激光器组件的跟踪误差	
1.	15 带或不带尾纤激光二极管的光谱线宽	
2	光电探测器件的测试方法	
2.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
	极电流 $(I_{\text{C(H)}}$ 或 $I_{\text{C(e)}})$ ··································	
2.	- 11.1.1 W - 11.1 W -	
2.		(60)
2.		(61)
2.		
2.		···· (64)
2.	· · · · · · · · · · · · · · · · · · ·	
2.		(66)
3	光耦合器测试方法	(68)
3.		(68)
3.	2 输入-输出电容(C ₁₀) ·······	···· (69)

3.3	输入和输出之间的隔离电阻(R_{10}) ····································	(69)
3.4	隔离试验	(70)
3. 5	光耦合器的局部放电 ······	(71)
3.6	光耦合器的集电极-发射极饱和电压 $V_{ ext{CE(sat)}}$	(75)
3.7	光耦合器的开关时间 ······	(76)

中华人民共和国国家标准

半导体器件 分立器件和集成电路 第5部分:光电子器件

GB/T 15651—1995 IEC 747-5—1992

Semiconductor devices Discrete devices and integrated circuits Part 5:Optoelectronic devices

本标准等同采用 IEC 747-5—1992《半导体器件 分立器件和集成电路 第5部分:光电子器件》。

第1章 总则

1 引言

通常,本标准需要与 IEC 747-1—1983《半导体器件 分立器件和集成电路 第1部分:总则》一起使用。在 IEC 747-1中,可找到下列的全部基础资料:

- ——术语**;**
- ——文字符号;
- ——基本额定值和特性;
- ——测试方法;
- ——接收和可靠性。

2 范围

本标准给出了下列类型和分类型器件的标准:

- 半导体光发射器件,包括:
- ——发光二极管(LEDs);
- ——红外发射二极管(IRED)
- ——激光二极管和激光二极管组件
- ——光电子显示器件(在考虑中)。
- 半导体光电探测器件,包括:
- ——光电二极管;
- ——光电晶体管。
- 半导体光敏元器件,包括:
- ----光敏电阻,光导元件;
- ——光敏闸流管(在考虑中)
- 内部工作机理与光学辐射有关的半导体器件,包括:
- ——光耦合器

各章的排列顺序符合 IEC 747-1 第 I 章 2.1 条的规定。

第 Ⅱ 章 术语和文字符号

注:还有一些与光电子器件有关的术语,例如辐射度量,光度量和光谱度量,可参见IEV 845 的第 45 章。

1 物理概念

- 1.1 (电磁)辐射(IEV 845-01-01)
 - 1) 能量以与光子相关的电磁波形式的发射或转移。
 - 2) 电磁波或光子。
- 1.2 光学辐射(IEV 845-01-02)

辐射波长在 X 射线与无线电波间(≈1~106 nm)的电磁辐射。

1.3 可见光辐射(IEV 845-01-03)

能直接引起视觉感应的任何光学辐射。

注:由于可见光光谱范围取决于有效辐射功率的大小和观察者眼睛的响应度,所以,可见光光谱区没有一个严格的界限,一般下限定为 360 nm 或 400 nm;上限定为 760 nm 或 830 nm。

1.4 红外辐射(IEV 845-01-04,已专用化)

辐射波长大于可见光波段的光学辐射。

1.5 紫外辐射(IEV 845-01-05,已专用化) 辐射波长小于可见光波段的光学辐射。

- 1.6 光(IEV 845-01-06,与注解 2 无关)
- 1.6.1 光的一般概念(见IEV 845-02-17)
- 1.6.2 可见光(见IEV 845-01-03)

注,概念2有时用于可见光以外的光学辐射,但这种用法没有被推荐。

1.7 光电效应(根据 IEV 845-05-33; 光电探测器)

由于光与物质之间的相互作用,引起了光子的吸收并随即产生可移动电荷载流子。因此产生电势或电流或电阻的变化,但不包括因温度变化而引起的某些电学现象。

2 器件类型

- 2.1 半导体光电子器件
 - 1)发射,探测及对相干光或非相干光辐射敏感的半导体器件。
 - 2) 其内部工作机理与光学辐射有关的半导体器件。
- 2.2 半导体光发射器件

直接把电能转换成光辐射能的半导体光电子器件。

2.3 半导体光电子显示器件

为显示可见信息,而设计的一种半导体发光器件。

- 2.4 半导体激光器
- 2.4.1 半导体激光二极管

半导体激光二极管是这样一种半导体二极管:当二极管的激励电流大于阈值时,由自由电子与空穴的复合引起受激发射而发射相干光的二极管。

注:激光二极管一般安装在热沉上或封装在带有或不带有耦合装置(即透镜、尾纤)的管壳中。

2.4.2 半导体激光二极管组件

组件包括:激光二极管,输出光功率的自动光控装置和/或热稳定装置。

2.5 发光二极管(LED)

在一定电流激励下,发射可见光的半导体二极管,它和半导体激光器是不同的。

2.6 红外发射二极管(IRED)

在一定电流激励下,可发射红外光的半导体二极管,它和半导体激光器是不同的。

2.7 半导体光敏器件

利用光电效应来探测光辐射的半导体器件。

2.8 半导体光电探测器

利用光电效应来探测光辐射的半导体器件。

2.9 半导体光敏电阻,光导元件(IEV 845-05-37,已专用化)

利用光吸收,引起电导率变化的一种半导体光敏元器件。

2.10 光电元件,光伏电池(IEV 845-05-38)

利用吸收光辐射产生电动势的一种光电探测器。

2.11 光电二极管(IEV 845-05-39)

在两种半导体之间的 PN 结区或在半导体与金属之间的结区,吸收光辐射而产生光电流的一种光电探测器。

2.12 雪崩光电二极管(IEV 845-05-40,已专用化)

在一定反向偏置作用下,初始光电流在其内部能获得放大的光电二极管。

2.13 光电晶体管

在其发射结附近,通过光电效应而产生电流(相当于基极电流),并能得到放大的晶体管。

2.14 光敏闸流管

由光辐射触发的一种闸流管。

2.15 光耦合器

利用光辐射传输电信号,使输入与输出之间达到电隔离耦合的一种半导体光电子器件。

3 一般术语

3.1 光轴 Aptical axis

关于主辐射能或灵敏度分布中心的一条直线。

注:除非另有规定,光轴即为最大辐射能或最大灵敏度的方向。

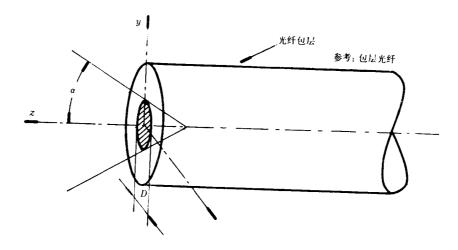
3.2 (半导体光电子器件)光学窗口 Optical part

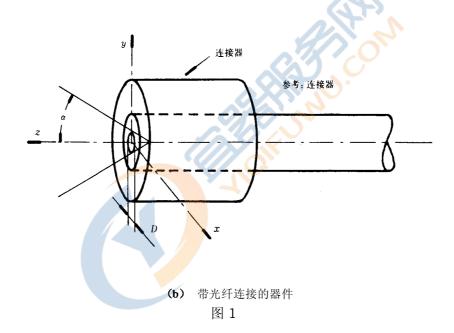
以器件表面或外部某一平面为参考面,用于描述发射器件发出的光辐射或探测器接收辐射的几何结构。

注:制造者应用几何数据对几何结构进行描述,如:

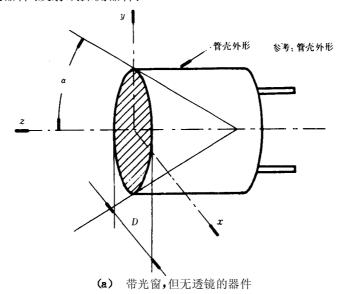
- 发射或接收面积位置,形状和尺寸;
- 发射或接收的角度;
- 其他参数,如光纤的数值孔径;
- 光轴取向;

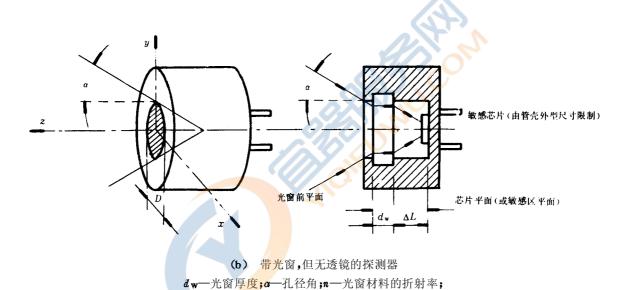
例:


图中字母的含义:

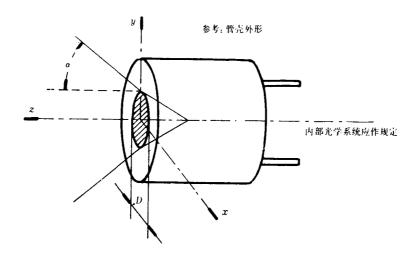

- α-接收角度;
- D一光学窗口的直径;

Ref—光学窗口定义的基准点

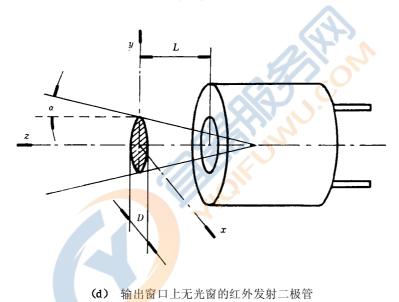

例1:带尾纤的器件(发射或探测器件)



(a) 带裸光纤的器件



例 2 不带尾纤的封装器件(发射或探测器件)



Δ**L**—光窗后平面与芯片平面之间的距离 图 **2**

(c) 带透镜的探测器

续图 2

例 3 不带尾纤的未封装器件(发射或探测器件)

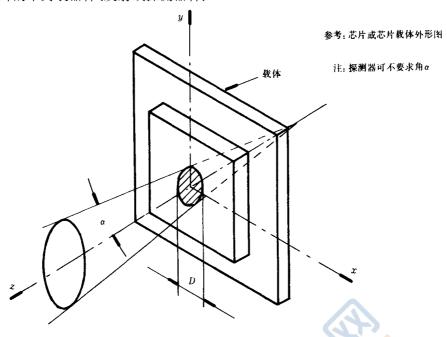


图 3 不带尾纤的未封装器件

- **3.3** (光学)涂层(IEV 731-02-05) Cladding 光纤纤芯周围的介质材料。
- 4 与额定值和特性有关的术语
- 4.1 一般术语
- 4.1.1 开关时间 Switching times

注: 4.1.1.1~4.1.1.6 中给定电平的上限和下限通常为脉冲幅度的 90%和 10%(见图 4)。

4.1.1.1 开通延迟时间 $(t_{d(m)})$ Turn -on delay time

输入脉冲前沿规定低电平与输出脉冲前沿规定低电平之间的间隔时间。

4. 1. 1. 2 上升时间 (t_r) Rise time

输出脉冲前沿规定低电平与规定高电平之间的间隔时间。

4.1.1.3 开通时间(t_{on}) Turn-on time

输入脉冲前沿规定低电平与输出脉冲前沿规定高电平之间的间隔时间。

$$t_{\rm on} = t_{\rm d(on)} + t_{\rm r}$$

4.1.1.4 关断延迟时间 (t_{d(off)}) Turn-off delay time

输入脉冲后沿规定高电平与输出脉冲后沿规定高电平之间的间隔时间。

注:如果关断延迟时间主要是由于载流子存储引起的(如光耦合器中的晶体管),用术语"(载流子)存储时间"和符号4,来表示。

4. 1. 1. 5 下降时间 (t_f) Fall time

注:输出脉冲后沿规定高电平与规定低电平之间的间隔时间。

4.1.1.6 关断时间 Turn-off time (t_{off})

输入脉冲后沿规定高电平与输出脉冲后沿规定低电平之间的间隔时间。

$$t_{\rm off} = t_{\rm d(off)} + t_{\rm f}$$

- 4.2 光发射器件
- 4.2.1 辐射功率、光通量
- **4.2.1.1** 辐射功率 (ϕ_e) Radiant power (光发射器件的) 从器件光学窗口发出的辐射功率。

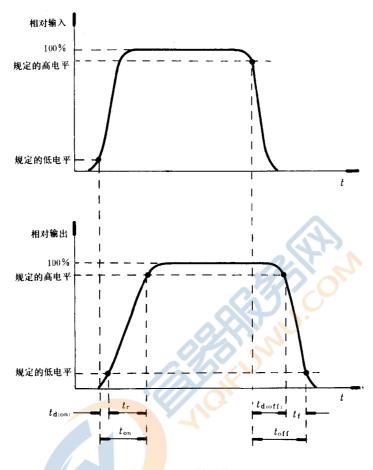


图 4 开关时间

- **4.2.1.2** 光通量 **(Φ_v) Luminous flux efficacy**(光发射器件的**)** 从器件光学窗口发出的光通量。
- 4.2.2 功效
- **4.2.2.1** 辐射功率功效 (η_e) Radiant power efficacy, 辐射功效 (η) Radiant efficacy (红外发射二极管或激光二极管的)

辐射功率与正向电流 $I_{\rm F}$ 之比,用下式表示:

$$\eta_{\rm e} = \Phi_{\rm e}/I_{\rm F}$$

- 注:如果不致引起歧义时,尤其是在 IEV 845-01-54 条中,术语"辐射效率" $\eta_{\bullet} = \Phi_{\bullet}/(I_{F} \bullet V_{F})$ 简称为"辐射功效"或"功效",也是可以的。
- **4. 2. 2. 2** 辐射强度功效 (η_{ei}) Radiant intensity efficacy (红外发射二极管或激光二极管的)辐射强度 I_e 与正向电流 I_F 之比,即:

$$\eta_{
m ei} = I_{
m e}/I_{
m F}$$

4.2.2.3 光通量功效 (n) Luminous flux efficacy,发光功效(发光二极管的)

光通量 ϕ_v 与正向电流之比,即:

$$\eta_{
m v} = \Phi_{
m v}/I_{
m F}$$

注:如果不致引起歧义时,尤其是在 IEV 845-01-55 条中:术语"光源的发光效率" $\eta_e = \sigma_e/(I_F \bullet V_F)$ 或 IEV 845-01-56 条件中:术语"辐射体的发光效率" $k = \sigma_V/\sigma_e$ 简称为"发光功效"或"功效"也是可以的。

4.2.2.4 发光强度功效 (η_{νi}) Luminous intensity efficacy (发光二极管的)

发光强度 I_v 与正向电流 I_F 之比,即:

$$\eta_{
m vi} = I_{
m v}/I_{
m F}$$

4. 2. 2. 5 微分辐射功率效率 (η_{ed}) Differential radiant power efficacy, 微分辐射功效 (η_d) differential radiant efficacy (红外发射二极管或激光二极管的)

小信号调制时的辐射功率效率,即:

$$\eta_{\rm ed} = \mathrm{d} \Phi_{\rm e}/\mathrm{d} I_{\rm F}$$

- 注:① 如果不致引起歧义时,可简称为微分辐射功效,用符号 74 表示。
 - ②"微分辐射功效"与"小信号调制功效"同义。
- **4. 2. 2. 6** 微分辐射强度功效 (η_{eid})Differential radiant intensity efficacy(红外发射二极管或激光二极管的)

小信号调制时的辐射强度功效,即:

$$\eta_{
m eid} = {
m d}I_{
m e}/{
m d}I_{
m F}$$

4.2.2.7 微分光通量功效 (η_{να})Differential luminous flux efficacy, 微分发光功效 (η_α)differential luminous efficacy(发光二极管的)

小信号调制时的光通量功效,即:

$$\eta_{\rm vd} = \mathrm{d}\Phi_{\rm v}/\mathrm{d}I_{\rm F}$$

- 注:① 如果不致引起歧义时,可简称为微分发光功效,用 74 表示。
 - ② 与小信号调制功效同义。
- **4.2.2.8** 微分发光强度功效 (ηνω) Differential luminous inttensity efficacy (发光二极管的) 小信号调制时的发光强度功效,即:

$$\eta_{\rm vid} = {\rm d}I_{\rm v}/{\rm d}I_{\rm F}$$

4.2.2.9 大信号辐射功率功效 (η_{LL}) Large-signal radiant power efficacy, 大信号辐射功效 (η_L) large-signal radiant efficacy(红外发射二极管或激光二极管的)

大信号调制时的辐射功率功效,即:

$$\eta_{\mathrm{EL}} = \Delta \Phi_{\mathrm{e}} / \Delta I_{\mathrm{F}}$$

注:如果不致引起歧义时,可简称为大信号辐射功效,用符号 n. 表示。

4. 2. 2. 10 大信号辐射强度功效 (η_{ΕΠ}) Large-signal radiant intensity efficacy(红外发射二极管或激光二极管的)

大信号调制时的辐射强度功效:

4.2.2.11 大信号发光通量功效 (ηνι) Large-signal luminous flux efficacy, 大信号发光功效 (ηι) large-signal luminous efficacy(发光二极管的)

大信号调制时的发光通量功效:

$$\eta_{
m VL} = \Delta \Phi_{
m v}/\Delta I_{
m F}$$

注:如果不致引起歧义时,可简称为大信号发光功效,用符号 n. 表示。

4. 2. 2. 12 大信号发光强度功效 (ηντ.) Large-signal luminous intensity efficacy (发光二极管的) 大信号调制时的发光强度功效:

$$\eta_{\rm VIL} = \Delta I_{\rm v}/\Delta I_{\rm F}$$

- 4.2.3 截止频率
- **4. 2. 3. 1** 小信号(调制)截止频率 (f_{cd} , f_c)Small-signal cut-off frequency (发光二极管的) 在恒定的正向电流调制深度下,随着频率的增高,解调后的交流光辐射功率下降为其低频的 1/2 时的频率。
- **4.2.3.2** 大信号(调制)截止频率 (f_{cL},f_c)Large-signal cut-off frequency (发光二极管的) 正在考虑中。
- 4. 2. 4 阈值电流 (I(TH))Threshold current (激光二极管的)

在激光二极管辐射功率 ϕ_{\bullet} 对正向电流 I_{P} 的二阶导数曲线上,第一个极大值处所对应的 I_{P} (见图 5)。

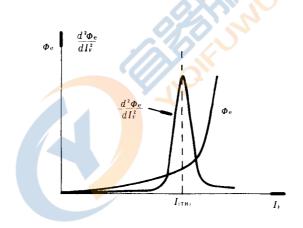


图 5 激光二极管的阈值电流

- 4.2.5 空间辐射图及相关特性(光发射器件的)
- 4. 2. 5. 1 辐射图 Radiation diagram

表示辐射(或发光)强度分布特征的一种图。

$I_{\mathfrak{s}}($ 或 $I_{\mathfrak{v}}) = f(\theta)($ 见图 $\mathfrak{g}(\mathfrak{a})$ 和 $\mathfrak{g}(\mathfrak{b}))$

- 注:①除非另有规定,辐射(或发光)强度的分布应在规定的平面内,这个平面包括机械轴 Z。
 - ② 如果辐射图是绕 Z 轴旋旋对称的,辐射图仅规定一个平面。
 - ③ 如果辐射图不是绕 \mathbf{Z} 轴旋转对称的,应规定各种角度。在详细规范中画辐射图时,应规定 \mathbf{x} , \mathbf{y} 和 \mathbf{z} 的方向。
- **4.2.5.2** 半强度角 $(\theta_{1/2})$ Half—intensity angle

在辐射图中,辐射(或发光)强度等于或大于最大值的一半所对应的夹角(见图 6(b))。

4.2.5.3 角偏差 $(\Delta \theta)$ Misalig angle

在辐射图中,最大辐射(或发光)强度方向(光轴)和机械轴 Z 之间的夹角(见图 6(b))

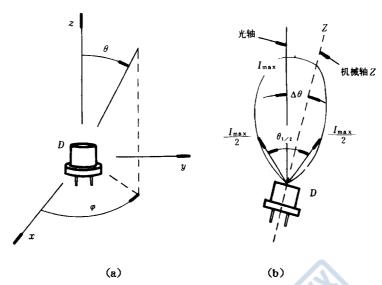


图 6 辐射图及相关特性

- 4.2.6 光谱特性(发光二极管和红外发射二极管的)(见图 7)
- **4.2.6.1** 峰值发射波长 (λ_b) Peak-emission wavelength 辐射功率最大值所对应的波长。
- **4. 2. 6. 2** 光谱辐射带宽 $(\Delta \lambda)$ Spectral radiation bandwidth 光谱辐射功率等于或大于最大值的一半时的波长间隔。
- **4. 2. 6. 3** (相关)寄生辐射功率 ($\Phi_{e_{(par)}}$)Parasitic radiant power 或光通量 ($\Phi_{v_{(par)}}$)luminous flux 在小于和大于峰值发射波长的两个规定波长范围内,不希望的光谱辐射功率值,这个值用百分数来表示。

注:规定值指的是规定波长范围内的最大值。

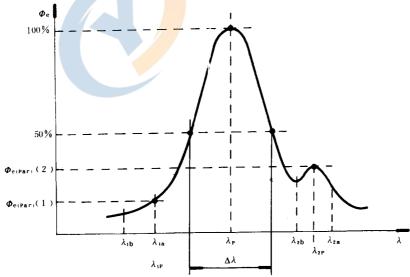


图 7 发光二极管和红外发光二极管的光谱特性

- 4.2.7 光谱特性(激光二极管及激光二极管组件的)(见图 8)
- **4.2.7.1** 峰值发射波长 **(**λ_b**)**Peak emission wavelength 最大光谱辐射功率模的峰值所对应的波长。

4.2.7.2 光谱辐射带宽 (Δλ)Spectral radiation bandwidth

带宽包括辐射功率等于或大于给定峰值发射波长功率百分数的所有波长。

- 注:① 除非另有规定,上述规定的百分数为50%。
 - ② 此定义考虑了在光谱辐射带宽范围内出现的低于所规定百分数的峰值。

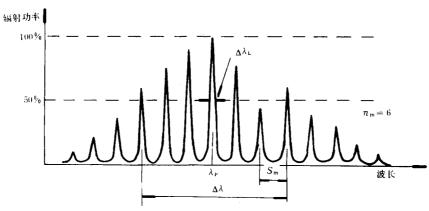


图 8 激光二极管及激光二极管组件的光谱特性

4.2.7.3 光谱线宽 (Δλ_L)Spectral linewidth

光谱辐射功率为其最大值一半的谱线两点间的波长间隔。

4.2.7.4 中心波长 (λ)Central wavelength

模波长的加权平均值,用下式计算:

$$\lambda = \frac{\sum_{i=-\infty}^{i=+\infty} a_i \cdot \lambda_i}{\sum_{i=-\infty}^{i=\infty} a_i}$$

式中: λ — 第 i 条谱线的波长, 对 λ_0 来说, i=0;

 a_i — 第 i 条谱线的幅度。

4.2.7.5 方均根(RMS)带宽 (Δλ_{ms})RMS bandwidth

RMS 带宽按下式定义:

$$\Delta \lambda_{\text{rms}} = \sqrt{\frac{\sum_{i=-\infty}^{i=+\infty} a_i (\lambda_i - \overline{\lambda})^2}{\sum_{i=-\infty}^{i=+\infty} a_i}}$$

式中: λ — 第 i 条谱线波长,对 λ 来说,i=0;

 a_i — 第 i 条谱线幅度;

λ——中心波长。

4.2.7.6 纵模数 (n_m)Number of longitudinal modes

在光谱带宽范围内的纵模个数,包括带宽边界模。

4. 2. 7. 7 模距 (S_m) mode spacing

相邻两纵模间的波长差。

4. 2. 7. 8 边模抑制比 (SMS)Side-mode suppression ratio

峰值辐射功率 Φ_{ep} 与最大次模辐射功率 Φ_{es} 之比(见图 9)

注:边模抑制比通常表示为:

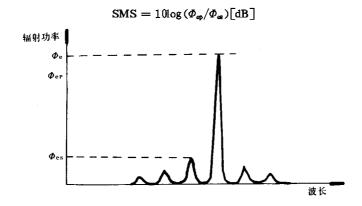


图 9 边模抑制比

- **4.2.7.9** 光谱漂移(由电流或温度变化引起的) (Δλ)Spectral shift 正在考虑中。
- **4.2.7.10** 输入反射系数 (S₁₁)Input refection coefficient 正在考虑中。
- **4.2.7.** 11 辐射功率 (Φ_∞)Radiant power(带或不带热沉的激光二极管芯片) 见第 **π** 章 **,** 第 8 节 **,** 6. 1 条 **,**
- 4.2.8 发射源(激光二极管的)
- 4.2.8.1 发射源宽宽 (Sw)Emrssion source width

在激光二极管端面上长轴方向,辐射强度均大于或等于最大值规定的百分数,即为发射源宽度 $S_{\mathbf{w}}$ (见图 10)。

- 注: ① 长轴方向平行于 PN 结平面。
 - ②除非另有规定,规定的百分数为50%。
- 4. 2. 8. 2 发射源高度 (Sh) Emission source height

在激光二极管端面上的短轴方向,辐射强度均大于或等于最大值规定百分数,即为发射源高度 S_h (见图 10)。

- 注:① 短轴方向垂直于 PN 结平面。
 - ② 除非另有规定,规定百分数为50%。
- 4. 2. 8. 3 象散 (d_A)Astigmatism

辐射象散分别来自长轴和短轴方向波前曲率差,由于主轴方向的曲率中心在端面后,通常比次轴方向上远,由此引起象散。

- 注:① 象散可由凸形有效发射源的曲率差即 $d_A=a-b$ 来表示。
 - ② 当聚焦束直径在两个方向均为最小时, d 和 可根据聚焦透镜的位置算得。

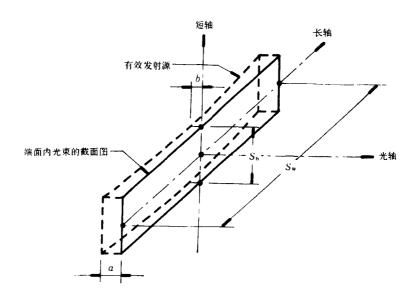


图 10 激光二极管的发射源

- 4.2.9 噪声特性(激光二极管的)
- **4. 2. 9. 1** 相对噪声强度 **(RIN)**Relative intensity noise 正在考虑中。
- 4. 2. 9. 2 载流子-噪声比 (C/N)carrier-to-noise radio 规定频率下的均方辐射功率与垂直于载频中心单位带宽内的均方辐射功率涨落之比。
- 4. 2. 9. 3 k 因子,模式分配噪声 K-factor; modee partition noise 正在考虑中。
- 4.2.10 其他特性(激光二极管组件的)
- **4. 2. 10. 1** 跟踪误差 **Tracking error** 正在考虑中。
- 4.3 光电探测器件
- **4. 3. 1** 输出电流 **Output currents**(光电二极管的) 注:正在考虑中,但下标**D**(代表暗)和**P**(代表光)仍然可以用。
- **4.3.1.1** 反向电流(在光辐射下) $(I_{\mathbf{R}(\mathbf{H})}$ or $I_{\mathbf{R}(\mathbf{e})}$, $I_{\mathbf{R}}$) Reverse current 当光电二极管受到入射光照射时的总反向电流。
- **4. 3. 1. 2** 暗电流 $(I_{\mathbf{R}(\mathbf{D})})$ Dark current 无光照时光电二极管的反向电流。
- **4. 3. 1. 3** 光电流 (*I_P*)Photocurrent 由入射光辐射所产生的那部份反向电流。

$$I_{\rm p} = I_{\rm R(H)} - I_{\rm R(D)}$$

- 4.3.2 输出电流 Output currents (光电晶体管的)
- **4. 3. 2.1** 集电极电流(光照时) $(I_{C(H)} \text{ or } I_{C(e)}, I_{C})$ collector current 当光电晶体管受到入射光照射时的集电极总电流
- **4. 3. 2. 2** 集电极-发射极暗电流 (*I*_{CBO})Colector-emittteer dark current 无光照时的集电极电流。
- 4.3.3 灵敏度

4. 3. 3. 1 灵敏度 (*S*_D, *S*)Sensitivity(光电二极管的)

光电二极管的光电流 $I_{\mathbf{p}}$ 与该二极管光学窗口上的辐照度 $E_{\mathbf{e}}$ (或光照度 $E_{\mathbf{v}}$)之比,即:

$$S_{\mathrm{D}} = I_{\mathrm{p}}/E_{\mathrm{e}} \stackrel{\mathrm{d}}{\otimes} S_{\mathrm{D}} = I_{\mathrm{p}}/E_{\mathrm{V}}$$

注:如果不引起歧义时,可简称灵敏度,用 8 表示。

4. 3. 3. 2 (光纤输入)灵敏度 (S_{FD} ,S)Sensitivity(光信号由光纤的前端照射光电二极管)(如图 11) 当光纤相对于光电二极管光学窗口的径向位移 r 及光纤端面距光学窗口的距离 z 为规定值时,光电流与光纤输出功率 Φ_e (或光通量 Φ_v)之比。

$$S_{\text{FD}} = I_{\text{p}}/\Phi_{\text{e}} \stackrel{\text{\tiny de}}{\to} S_{\text{FD}} = I_{\text{p}}/\Phi_{\text{v}}$$

- 注:① 如果不引起歧义时,可简称灵敏度,用S表示。
 - ② 在技术说明书中,通常分别给出了 S_{PD} 与r和z的函数关系曲线。

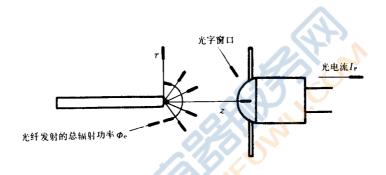


图 11 光纤输入灵敏度 8m

4. 3. 4 截止频率(光电二极管的)

4. 3. 4. 1 小信号截止频率 (fod, fo)Small-signal cut-off frequency

输入辐照功率恒定的小信号调制深度,解调后的信号功率下降至其低频功率的一半时的频率。

注:在测试 f_{\circ} 中,监视光电二极管的光电流,辐射功率下降 1/2 相对应的光电流便下降 1/2,从而光电流在负载电阻上的压降也下降 1/2(当负载电阻小于光电二极管的输出电阻时)。

4. 3. 4. 2 大信号截止频率 (fa.,fc)Large-signal cut-off frequency

对于输入辐照功率恒定的大信号调制深度情况,当频率高到一定值时,解调后的信号功率下降至低频的1/2时的频率值。

注:同4.3.4.1条的注释。

- 4.3.5 空间灵敏度图形和相关特性(光电探测器件的)
- 4. 3. 5. 1 灵敏度图形 Sensitivity diagram
 - 一种表征灵敏度分布情况的图形:

$S=f(\theta)$ (见图 12a 和 12b)

- 注:① 除非另有规定,灵敏度分布应规定在一个平面内,这个平面包括机械轴 2。
 - ② 如灵敏度图是相对 Z 轴旋转对称的,灵敏度图仅规定一个平面。
 - ③ 如灵敏度图对 Z 轴不是旋转对称的,在图中应规定 θ 角,详细规范中应规定 $x \cdot y \cdot z$ 的方向。

4. 3. 5. 2 半灵敏度角 ($\theta_{S/2}$)Half—Sensitivity angle

在灵敏度图中,灵敏度大于或等于最大值的一半所对应的角。

4. 3. 5. 3 角偏差 $(\Delta\theta)$ Misalignmentt angle

在灵敏度图中,最大灵敏度方向(光轴)与机械轴之间的夹角(见图 126)。

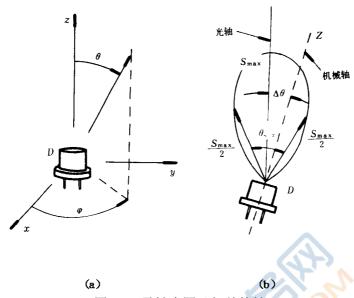


图 12 灵敏度图及相关特性

- 4.3.6 光谱特性(光电探测器件的)
- **4. 3. 6. 1** 峰值灵敏度波长 (λ_b) Peak-sensitivity wavelength 光谱灵敏度最大值所对应的波长。
- **4. 3. 7** 倍增因子 **(***M***)**Multiplication factor(雪崩光电二极管的) 载流子产生倍增时的光电流(V_{R2} 对应的 I_{R2})之比:

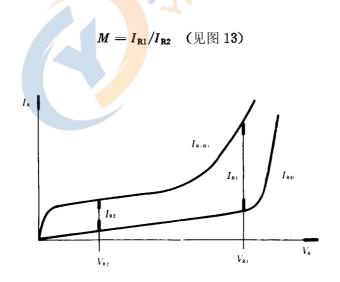


图 13 雪崩光电二极管的倍增因子

- **4.3.8** 过剩噪声因子 **Excess noise factor**(雪崩光电二极管的)正在考虑中。
- 4.4 光耦合器

16

- 4.4.1 电流传输比
- **4. 4. 1. 1** (正向)电流传输比静态值 (h_{F(etr)},h_F)Static value of the (forward)current transfer radio 输出电压保持恒定时,直流输出电流与直流输入电流之比。

注:有时用缩写CTR(dc)来表示此参数。

4. 4. 1. 2 小信号短路(正向)电流传输比 (h_{f(etr)},h_F)Small—signal short—circuit(forward)current transfer radio

输出交流短路时,交流输出电流与交流输入电流之比。

注:有时用缩写CTR(ac)来表示此参数。

4.4.2 截止频率 (fetr)Cut-off frequency

当频率高到,小信号电流传输比的模下降到其低频值的 1/2 时的频率。

4.4.3 输入-输出电容 (C_{10})Input-to-output capacitance

将所有的输入端与输出端分别连在一起时的输出端与输入端之间的总电容。

4.4.4 隔离电阻 (R₁₀)Isolation resistance

将所有的输入端与输出端分别连在一起时的输入端与输出端之间的电阻。

4.4.5 隔离电压

任一输入端与任一输出端间的电压。

- **4.4.5.1** 直流隔离电压 (V₁₀) Isolation voltage D. C. isolation voltage 恒定隔离电压值。
- 4. 4. 5. 2 重复峰值隔离电压 (V_{IORM})Repetitive peak isolation voltage

隔离电压的最大瞬时值,包括所有的重复瞬态电压,但不包括所有不重复瞬态电压。

注:重复瞬态电压通常与电路功能有关;不重复瞬态电压通常是由外部原因引起,而且外部原因产生的影响总是在下一个不重复瞬态电压到来之前已完全消失。

4. 4. 5. 3 浪涌隔离电压 (V_{IOSM})Surge isolation voltage

具有短持续时间和规定波形的隔离电压脉冲的最大瞬时值。

5 文字符号

正在考虑中。

第**Ⅲ章** 基本额定值和特性 第1节 发光二极管

(用于光纤系统或子系统的器件将在第7节中叙述)。

1 类型

环境额定或管壳额定的发光二极管。

2 半导体材料

镓磷砷、磷化镓、镓铝砷等。

- 3 颜色
- 4 外形与封装细节
- 4.1 引用 IEC 和(或)国家标准的外形图号。

- 4.2 封装形式:玻璃/金属/塑封/其他。
- 4.3 引出端识别和引出端与管壳之间任何连接的标记。
- 5 在整个工作温度范围内的极限值(绝对最大值)(除非另有规定)
- 5.1 最低和最高贮存温度(T_{sts})。
- 5.2 最低和最高工作环境温度或管壳温度(T_{amb} 或 T_{case})。
- 5.3 最大反向电压(V_R)。

注:不适用于阳极与阴极和阴极与阳极连在一起的双二极管器件。

- **5.4** 环境或管壳温度为 25℃时的最大正向直流电流(I_{FM})和 25℃以上降额曲线或降额系数(K_t)。
- 5.5 适用时,在规定的脉冲条件下,环境或管壳温度为 25℃时的最大正向峰值电流(I_{FPM})。

6 光电特性

对于复合二极管,应给出每个二极管的特性。对于特殊应用,可要求附加特性。

序号	特性	条 件 T_{amb} 或 T_{case} =25℃ (除非另有规定)	注	符号	要求
6. 1	正向电压	I ₽为规定值(直流或脉冲)	1	$V_{\mathbf{F}}$	Max
6. 2	反向电流	V _R 为规定值	1)	I_{R}	Max
6- 3	沿着规定机械轴的发光强度	I _P 为规定值(直流或脉冲)	2) 3)	$I_{ m V}$	Min
6. 4	峰值发射波长	I _F 为规定值(直流或脉冲)		$\lambda_{\mathbf{p}}$	Min Max
6. 5	光谱辐射带宽(适用时)	I _F 值同 6.4 条的规定		Δλ	Max
6. 6	开关时间(适用时)	N. C.			Max
6- 7	半强度角(适用时)			θ _{1/2}	Min Max (适用时)

- 注:1) 不适用于阳极与阴极和阴极与阳极连接在一起的双二极管器件。
 - 2) 如果测试发光强度时所用的立体角不可忽略时,应规定立体角的大小。
 - 3) 对于用于复合二极管阵列的二极管也要求最小发光强度。

7 补充资料

7.1 辐射图

用极坐标或直角坐标表示的典型发光强度与视角的关系曲线图。

7.2 光谱图(适用时)

用图表示典型的发光强度与波长的关系曲线图。

7.3 机械资料

安装和焊接条件(适用时)。

第2节 红外发射二极管

(用于光纤系统或子系统的红外发射二极管将在第7节中叙述)

1 类型

环境额定或管壳额定的红外发射二极管。

18

2 半导体材料

砷化镓、镓铝砷等。

3 外形与封装细节

- 3.1 引用 IEC 和(或)国家标准的外形图号
- 3.2 封装形式:玻璃/金属/塑封/其他。
- 3.3 引出端识别和引出端与管壳之间任何连接的标记。
- 4 在整个工作温度范围内的极限值(绝对最大值)(除非另有规定)
- **4.1** 最低和最高贮存温度(T_{stg})。
- 4.2 最低和最高工作环境温度或管壳温度 $(T_{amb}$ 或 $T_{case})$ 。
- 4.3 最大反向电压(V_R)。
- **4.4** 环境或管壳温度为 25℃时的最大正向直流电流(I_{FM})和 25℃以上降额曲线或降额系数(K_{t})。
- 4.5 适用时,在规定的脉条件下,环境或管壳温度为25℃时的最大正向峰值电流(IFFM)。

5 光电特性

对于特殊应用,可要求附加特性。

序号	特性	条 件 $T_{ m amb}$ 或 $T_{ m case}$ =25℃ (除非另有规定)	注	符号	要求
5. 1	正向电压	I _F 为规定值(直流或脉冲)		$V_{\mathbf{F}}$	Max
5- 2	反向电流	V _R 为规定值	1)	$I_{ m R}$	Max
5. 3	沿着规定机械轴的辐射输出功 率或辐射强度	I _F 为规定值(直流或脉冲)	1)	$\Phi_{ m e}$ $I_{ m e}$	Min
5. 4	峰值发射波长	I _F 为规定值(直流或脉冲)		$\lambda_{\mathbf{p}}$	Min Max
5. 5	光谱辐射带宽(适用时)	Ip 值同 5. 4 条的规定		Δλ	Max
5. 6	开关时间(适用时)			$t_{ m on}$ $t_{ m off}$	Max
5. 7	半强度角(适用时)			$ heta_{1/2}$	Min Max (适用时)
5- 8	电容(适用时)			$C_{ m tot}$	Max

注:1)如果测试辐射强度时,所用的立体角不可忽略时,应规定立体角的大小。

6 补充资料

6.1 辐射图

用极坐标或直角坐标表示的典型辐射功率或辐射输出强度与相对于规定的机械轴夹角的关系曲线图。

6.2 光谱图

表示典型的辐射输出功率或辐射强度与波长的关系曲线图。

6.3 机械资料

安装和焊接条件(适用时)。

第3节 光电二极管

(用于光纤系统或子系统的除外)

1 类型

供小信号或开关用的环境额定或管壳额定的光电二极管。

2 半导体材料

硅等。

3 外形与封装细节

- 3.1 引用 IEC 和(或)国家标准的外形图号
- 3.2 封装形式:玻璃/金属/塑封/其他。
- 3.3 引出端识别和引出端与管壳之间任何连接的标记。

4 在整个工作温度范围内的极限值(绝对最大值)(除非另有规定)

- **4.1** 最低和最高贮存温度(T_{stg})。
- **4.2** 最低和最高工作环境温度或管壳温度(T_{amb} 或 T_{case})。
- 4.3 最大反向电压(V_R)。
- 4.4 适用时:

环境或管壳温度在 25 \mathbb{C} 时的最大总耗散功率 (P_{tot}) 和 25 \mathbb{C} 以上的降额曲线或降额系数 (K_t) 。

5 光电特性

序号	特性	条 件 T _{amb} 或T _{case} =25℃	注	符号	要求
5. 1	光照下的反向电流	(除非另有规定) V _R 为规定值, E _v 或 E _e 为规定值 E _e 为规定值	1)	$I_{ m R(H)}$ 或 $I_{ m R(e)}$	Min
5- 2	暗电流	$V_{\mathbf{R}}$ 为规定值, $E_{\mathbf{e}} = 0$		$I_{R(D)}$	Max
5. 3	暗电流	$V_{\mathbf{R}}$ 为规定值, $E_{\mathbf{e}}=0$,($T_{\mathbf{amb}}$ 或 $T_{\mathbf{case}}$ 在规定的高温下)		$I_{\mathbf{R}(\mathbf{D})}$	Max
5. 4	光谱灵敏度 (适用时)	ν _R 为规定值, Ε _e 为规定值 在规定的短波长 λ _I 下和 在规定的长波长 λ _E 下		S S	Min Min
5. 5	开关时间(适用时)上升时间和 下降时间或: 开通时间和关断时间	规定的电路, V_R 、 E_v 或 E_e 为规定值 规定的电路, V_R 、 E_V 或 E_e 为规定值		$egin{array}{c} t_{ m r} & & & & & & & & & & & & & & & & & & $	Max Max Max Max

注:1)用标准光源 A 照射(符合 IEC 306—1 号标准)即用色温 T=2 855.6 K 的钨丝灯照射或用规定的单色光源照射。

6 补充资料

- 6.1 典型的灵敏度图
- 6.2 典型的光谱图

表示相对光谱灵敏度与波长的关系曲线图。

第4节 光电晶体管

(用于光纤系统或子系统的除外)

1 类型

供小信号或开关用的环境额定或管壳额定的光电晶体管。

2 半导体材料

硅等。

3 极性

NPN 或 PNP

- 4 外形与封装细节
- 4.1 引用 IEC 和(或)国家标准的外形图号。
- 4.2 封装形式:玻璃/金属/塑封/其他。
- 4.3 引出端识别和引出端与管壳之间任何连接的标记。
- 5 在整个工作温度范围内的极限值(绝对最大值)(除非另有规定)
- **5.**1 最低和最高贮存温度(**T**_{stg})。
- 5.2 最低和最高工作环境温度或管壳温度 $(T_{amb}$ 或 $T_{case})$ 。
- 5.3 基极电流为零时的最大集电极-发射极电压(V_{CEO})。
- 5.4 基极有外部连接时:
- **5.4.1** 发射极电流为零时的最大集电极-基极电压(V_{CBO})。
- 5. 4. 2 集电极电流为零时的最大发射极-基极电压(V_{EBO})。
- 5.5 基极无外部连接时:

最大发射极-集电极电压(V_{ECO})。

- 5.6 最大集电极直流电流(I_c)。
- 5.7 适用时:

环境或管壳温度在 25℃时的最大总耗散功率(Ptot),和 25℃以上的降额曲线或降额系数(Kt)。

6 光电特性

				T	
序号	特性	条 件 T _{amb} 或 T _{case} =25℃ (除非另有规定)	注	符号	要求
6. 1	光照下的集电极电流	V_{CE} , E_{v} 或 E_{e} 为规定值 $I_{\text{B}}{=}0$	1)	$I_{ extsf{C(H)}}$ 或 $I_{ extsf{C(e)}}$	Min Max (适用时)
6- 2	集电极-发射极暗电流	V _{CE} 为规定值,I _B =0,E _e =0		$I_{ ext{CEO}}$	Max
6. 3	集电极-发射极暗电流	V_{CE} 为规定值, $I_B=0$, $E_e=0$ 在规定的高温		$I_{ ext{CEO}}$	Max
6- 4	集电极-发射极击穿电压	$I_{\mathbf{C}}$ 为规定值, $I_{\mathbf{B}} = 0$, $E_{\mathbf{e}} = 0$		V (BR)CEO	Min
6. 5	发射极-基极击穿电压或无基极引出端时,发射极-集电极击穿电压			V (BR)EBO V (BR)ECO	Min Min
6- 6	集电极-发射极饱和电压	I_{c} 为规定值, I_{B} =0, E_{v} 或 E_{e} 为规定值(最好同 6.1 条的规定)	1)	V CE (sat)	Max
6- 7	光谱灵敏度(适用时)	I _B =0,E _e 为规定值,在规定的短波 长 λ ₁ 和在规定长波长 λ ₂ 下	•	S S	Min Min
6-8	开关时间(适用时): 上升时间和下降时间或开 通时间和判断时间	规定的电路, V_{CE} , I_{C} 为规定值, E_{V} 或 E_{o} 为规定值规定的电路, V_{CE} ,		t_{r} , t_{f}	Max Max Max
		Ic 为规定值,Ev 或 E。为规定值		$t_{ m on}$, $t_{ m off}$	

注**.** 1) 用标准光源 A 照射 (符合 IEC 306—1 号标准),即用色温T=2 855. 6 K 的钨丝灯照射或用规定的单色光源照射。

7 补充资料

- 7.1 典型的灵敏度图
- 7.2 典型的光谱图

表示相对光谱灵敏度与波长的关系曲线图。

第5节 光耦合器(晶体管输出)

1 类型

供小信号隔离用并带晶体管输出的环境额定或管壳额定的光耦合器。

2 半导体材料

输入二极管:砷化镓、镓铝砷等。

22

输出晶体管:硅等。

3 输出晶体管的极性

4 外形与封装细节

- 4.1 引用 IEC 和(或)国家标准的外形图号。
- 4.2 封装形式:玻璃/金属/塑封/其他。
- 4.3 引出端识别和引出端与管壳之间任何连接的标记。
- 5 在整个工作温度范围内的极限值(绝对最大值)(除非另有规定)

表示诸如时间、频率、脉冲持续时间,湿度等任一限定条件。

- 5.1 最低和最高贮存温度 (T_{sts}) 。
- 5.2 最低和最高环境或基准点工作温度 $(T_{amb}$ 或 $T_{ref})$ 。
- 5.3 最高焊接温度(T_{sld}) 应规定最长焊接时间和至管壳的最短距离。
- 5.4 最大反向输入直流电压(V_{R})。
- 5.5 基极开路时的最大集电极-发射极电压(V_{CBO})。
- **5.6** 基极有外部连接的情况下,发射极开路时的最大集电极-基极电压(V_{CBO})。
- 5.7 基极有外部连接时的情况下,集电极开路时的最大发射极-基极电压 (V_{EBO}) 。
- **5.8** 基极无外部连接时,最大发射极-集电极电压(V_{ECO})。
- 5.9 最大直流隔离电压或最大重复峰值隔离电压(V₁₀或 V_{10RM})。 应规定其波形和重复率。
- 5.10 适用时,最大浪涌隔离电压(V_{LOSM})。

应规定具有图 14 所示波形的两种极性脉冲的最大浪涌隔离电压 (V_{IOSM}) 。

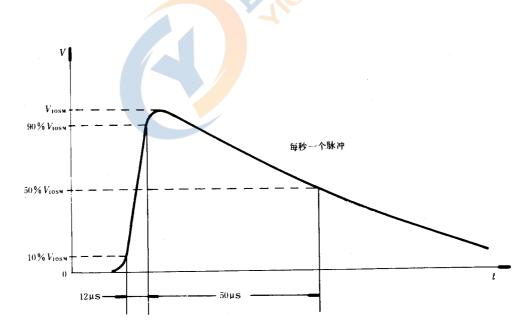


图 14 试验电压

5. 11 最大集电极直流电流(*I*_c)。

- **5.12** 环境或基准点温度为 **25℃**时的最大正向输入直流电流(*I_{FM}*)和 **25℃**以上时降额曲线或降额系数。
- 5.13 在规定的脉冲条件下,环境或基准点温度为 25℃时的最大正向峰值电流(I_{FFM})。
- **5.14** 环境或基准点温度为 **25℃**时的输出晶体管的最大耗散功率(P_{tm})和 **25℃**以上的降额曲线或降额系数。
- 5.15 环境或基准点温度为 25℃时的最大总耗散功率(Ptot)和 25℃以上的降额曲线或降额系数。

6 光电特性

序号	特性	条 件 T _{amb} 或 T _{ref} =25℃ (除非另有规定)	注	符号	要求
6. 1	输入二极管正向电压	I _F 为规定值		$V_{{f F}}$	Max
6- 2	输入二极管反向电流	$V_{\mathbf{R}}$ 为规定值	^	$I_{\mathbf{R}}$	Max
6. 3	集电极-发射极暗电流 或: 适用时,集电极-基极暗电 流	V_{CE} 为规定值, I_{F} =0, I_{B} =0 基极开路 V_{CB} 为规定值, I_{F} =0, I_{E} =0	1)	$I_{ ext{CBO}}$	Max Max
6- 4	集电极-发射极暗电流或: 适用时,集电极-基极暗电流	V_{CE} 为规定值, I_F 和 $I_B=0$, T_{amb} 或 T_{res} 为规定值 V_{CB} 为规定值, I_F 和 $I_E=0$, T_{amb} 或 T_{res} 为规定值	1)	$I_{ ext{CBO}}$	Max Max
6. 5	集电极-发射极饱和电压 或: 适用时集电极-基极电压	$I_{\mathrm{F}},I_{\mathrm{C}}$ 为规定值, $I_{\mathrm{B}}\!=\!0$ $I_{\mathrm{F}},I_{\mathrm{C}}$ 为规定值, $I_{\mathrm{E}}\!=\!0$	1)	$V_{\mathrm{CE}(\mathrm{sat})}$	Max Min
6- 6	电流传输比	I _P 或I _C ,V _C B为规定值,I _B =0		h┏或 CTR (直流)	Min Max
6- 7	适用时,微分电流传输比	$I_{\rm F}$ 或 $I_{\rm C}$, $V_{\rm CB}$ 为规定值, $I_{\rm B}$ =0,频率为规定值		h _f 或 CTR (交流)	Min Max
6- 8	输入与输出之间的隔离电 阻	V ₁₀ 为规定值	2)	R_{10}	Min
6. 9	适用时,输入与输出之间电容	$f=1 \text{ MHz}, I_{F}=0, I_{C}=0$	2)	C_{10}	Max

序号	特性	条 件 T _{amb} 或 T _{ref} =25℃ (除非另有规定)	注	符号	要求
6- 10	适用时,开关时间:开通时间和关断时间或: 上升时间和下降时间	V_{∞} , $I_{\rm F}$ 和 $R_{\rm L}$ 及额定电流 $I_{\rm C}$ 为规定值,规定的试验电路 V_{∞} , $I_{\rm F}$ 和 $R_{\rm L}$ 及额定电流 $I_{\rm C}$ 为规定值,规定的试验电路		$t_{ m on}$ $t_{ m off}$ $t_{ m r}$	Max Max Max
6. 11	适用时,截止频率	$I_{\rm F}$ 或 $I_{\rm C}$ 和 $V_{\rm CB}$ 为规定值, $I_{\rm B}$ =0	3)	$f_{ m ctr}$	Min

- 注:1)对二极管工作方式而言。
 - 2) 所有输入端应连在一起, 所有输出端也应连在一起。
 - 3) 截止频率是交流电流传输比的大小为其甚低值 0.707 倍时的最低频率。

7 补充资料

正在考虑中。

第6节 激光二极管

1 类型

下列应用的环境额定或管壳额定的激光二极管:

- A型:普通;
- B型:聚焦激光束;
- C型:光学数字传输;
- D型:光学模拟传输。

2 半导体

2.1 材料

砷化镓、镓铝砷、铟镓砷磷、铟镓铝磷等。

2.2 结构

增益导引、折射率导引、分布反馈等。

3 外形与封装细节

- 3.1 引用的 IEC 和(或)国家标准的外形图号。
- 3.2 封装形式:玻璃/金属/塑封/其他。
- 3.3 引出端识别和引出端与管壳之间的任何连接的标记。
- 3.4 光学窗口特性:相对于机械轴的方向,相对于机械轴的位置、数值孔径。
- 3.5 光纤的数据(适用时):光纤的类型,护套种类,连接器、长度。
- 4 在整个工作温度范围内的极限值(绝对最大值)(除非另有规定)
- 4.1 适用时,尾纤最小弯曲半径。

- 4.2 适用时,输出尾纤(光纤或光缆)轴向的最大拉力。
- **4.3** 最低和最高贮存温度(T_{stg})。
- 4.4 最低和最高工作温度。
- **4.4.1** 环境温度或管壳温度(T_{amb}或T_{case})。
- 4.4.2 适用时,热沉温度(T_{sub})。
- 4.5 最高焊接温度(规定焊接时间和至管壳的最短距离)(T_{sld})。
- 4.6 最大反向电压(V_R)。
- **4.7** 在环境温度或管壳温度为 **25℃**时,下面的一个或几个参数及其与温度有关的降额曲线或降额系数(K_t)。

最大直流正向电流(I_{FM})

最大连续辐射功率(**P**_{eM})

在规定频率和脉冲持续时间下的最大脉冲正向电流(IFFM)

在规定频率和脉冲持续时间下的最大脉冲辐射功率(Φ_{epM})

5 光电特性

规定辐射功率应指明器件是以连续或脉冲工作。 $\Delta I_{\mathbf{F}}$ 表示的是超过被测器件阈值电流 $I_{(\mathbf{TH})}$ 的正向电流。

	特性	条件 Tamb或Tcase=25℃	符号	类 型	要求	₹
71 3	14 177	(除非另有规定)	3.013	A B C D		
5. 1	正向电压	I _F 和 Φ _ε 为规定值	$V_{\mathbf{F}}$	XXXX	Ma	ax
5- 2	阈值电流	100	$I_{(\mathrm{TH})}$	XXXX	Min M	[ax
5- 3	阈值时的辐射功率	I _(TH)	${\it \Phi}_{\rm e(TH)}$	XXXX	Ma	ax
5. 4	超过阈值时的正向电流	ø _e 为规定值	$\Delta I_{ extbf{F}}^{1)}$	XXXX	Ma	ax
5. 4. 1	超过阈值时的正向电流	Ф _e 为 <mark>规</mark> 定值, T _{amb} 最高或	$\Delta I_{ extbf{F}}^{2)}$	XXXX	Ma	ax
<u> </u>	微分效率	T casemax 最高 Φe 或 ΔI _F 为规定值	<u> </u>	××××	Min M	 Iax
			$\eta_{ m d}$			
5- 6	峰值发射波长	Φ _ε 或 Δ I _F 为规定值	λ _P	XXXX	Min M	[ax
5. 7. 1	光谱辐射带宽或	ΔI_{F} 或 Φ_{e} 为规定值	Δλ	XXXX	Min M	[ax
5. 7. 2	纵模数和模距	$\Delta I_{\mathbf{F}}$ 或 $\boldsymbol{\Phi}_{\mathbf{e}}$ 为规定值	$n_{\rm m}$, $S_{\rm m}$	XXXX	Min M	[ax
5. 7. 3	光谱线宽(适用时)	$\Delta I_{\mathbf{F}}$ 或 $oldsymbol{\phi}_{\mathbf{e}}$ 为规定值	$\Delta \lambda_{ m L}$	XX	Ma	ax
5- 8	在两个规定面上的半强	ΔI _F 或 Φ _e 为规定值	$\theta_{1/2}^{1)}$	XX	Ma	ax
	度角(不带尾纤)		${ heta_{1/2}}^{2)}$	XX	Ma	
5. 9	角偏差	ΔI _F 或 Φ _e 为规定值	$\Delta heta$	X	Ma	ах

		条件		类 型	
序号	特性	T _{amb} 或 T _{case} =25℃ (除非另有规定)	符号	ABCD	要求
5. 10. 1	发射源尺寸(不带尾纤) 宽度和高度	$\Delta I_{\mathbf{F}}$ 或 $\boldsymbol{\sigma}_{\mathbf{e}}$ 为规定值,规定基准轴	Sw和Sh	X	Min Max
5- 10- 2	象散(不带尾纤)	$\Delta I_{\mathbf{P}}$ 或 $\boldsymbol{\sigma}_{\mathbf{e}}$ 为规定值,规定基准轴	d_{A}	×	Max
5. 11	微分电阻	$\Delta I_{\mathbf{F}}$ 或 $\boldsymbol{\Phi}_{\mathbf{e}}$ 为规定值	$r_{ m d}$	XX	Max
5. 12	开关时间	偏置条件(ΔI_F 或 Φ_e)为规定值			
5. 1 2. 1	上升时间和下降时间 或:	输入脉冲电流,宽度和占空比 为规定值	$t_{ m r}$, $t_{ m f}$	××	Max
	开通时间和关断时间		$t_{ m on}$, $t_{ m off}$	××	Max
5. 13	小信号截止频率	ΔI _F 或 Φ _e 为规定值	fc	X	Max
5. 1 4. 1	相对强度噪声(不带尾纤)	Φ_e,f₀,Δf_N 为规定值	RIN	X	Max
5. 14. 2	载流子-噪声比	Φ_{e} , f_{0} , Δf_{N} , f_{m} , m 为规定值	C/N	××	Max

注: 1) 连续工作。 2) 调制下。

6 补充资料

- 6.1 光谱漂移的温度函数
- 6.2 总电容
- 6.3 总电感
- 6.4 S11参数

第7节 用于光纤系统或子系统的发光二极管和红外发射二极管

1 类型

用于光纤系统或子系统,带或不带尾纤的环境额定或管壳额定的发光二极管或红外发射二极管。

2 半导体材料

砷化镓、镓铝砷、铟镓砷磷、磷化铟等。

3 外形与封装细节

- 3.1 引用 IEC 和(或)国家标准的外形图号。
- 3.2 封装形式:玻璃/金属/塑封/其他。
- 3.3 引出端识别和引出端与管壳之间任何连接的标记。
- 3.4 带尾纤的器件:输出光纤的结构、光纤最小弯曲半径、光纤的终端制备,包括连接器。例如,光纤类

型、芯径、数值孔径和输出光纤的长度。

- 4 在整个工作温度范围内的极限值(绝对最大值)(除非另有规定)
- **4.1** 最低和最高贮存温度(T_{stg})。
- **4.2** 最低和最高环境温度或管壳温度 $(T_{amb}$ 或 $T_{case})$ 。
- **4.3** 最高焊接温度**(***T*_{sld}**)**。 规定最长焊接时间和至管壳的最短距离。
- 4.4 最大反向电压(V_R)。
- 4.5 环境或管壳温度 25℃时的最大直流正向电流(I_{FM})25℃以上的和降额曲线或降额系数。
- 4.6 适用时,环境温度 25℃时,规定脉冲条件下的最大重复峰值正向电流(I_{FRM})。
- 4.7 环境或管壳温度为 25℃时的最大耗散功率(Ptot)。
- 4.8 适用时,管壳额定器件的实际结温(T(vn))。

5 光电特性

序号	特性	条 件 $T_{ m amb}$ 或 $T_{ m case}$ =25℃	注	符号	要	求
		(除非另有规定)				
5. 1	正向电压	I _P 为规定值		<i>V</i> _{F}		Max
5. 2	反向电流	V _R 为规定值		I_{R}		Max
5. 3	微分电阻(适用时)	I _P 为规定值		$r_{ m d}$		Max
5. 4	总电容(适用时)	▽_F、f 为规定值		C_{tot}		Max
5. 5	结和管壳间的热阻(如果 T (vn) 最大值在 4.8 条中做了规定			$R_{ m th(j-c)}$		Max
5- 6	噪声等效功率(适用时)	$I_{\mathbf{F}}$ 等效噪声带宽 $\Delta f_{\mathbf{N}}$,中心频率 f_{0}	1)	NEP		Max
5- 7	带尾纤的器件: 辐射功率和 辐射功率与温度的典型关率曲 线或系数和辐射功率与正向电 流(规定脉冲或直流)的典型关 系曲线	I _F 为规定值(直流和(或)脉冲	2)	Ø _e	Min	Max

		条件				
序号	特性	7	注	符号	要	求
	不带尾纤的器件: 沿着规定机械轴的辐射强度 和: 辐射强度与温度关系曲线或系 数,和辐射强度与正向电流(规 定直流或脉冲)的关系曲线	I _F 为规定值(直流和(或)脉冲)	2)	I.	Min	Max
5. 8	不带尾纤的器件:半强度角(适 用时)	I _P 为规定值	1)	$ heta_{1/2}$	Min	Max
5. 9	光轴与规定机械轴之间的角偏 差(适合时)	I _F 为规定值	1)	Δθ		Max
5. 10	带尾纤的器件: 尾纤终端的锥度	I _F 为规定值	1)	$ heta_{ m c}$		Max
5. 11	失真和(或)线性度	(正在考虑中)				
5. 12	峰值发射波长和 峰值发射波长随温度变化的典 型曲线或系数	I _P 为规定值		λ _{up}	Min	Max
5. 13	光谱辐射带宽	I _F 为规定值	3)	Δλ		Max
5. 14	开关时间: 上升时间、下降时间、 延迟时间(适用时)或 辐射功率或强度的截止频率 (正在考虑中)	I _F 为规定值 I _F 为规定值		$t_{ m r}$, $t_{ m f}$ $t_{ m d}$ $f_{ m C}$	Min	Max Max
5. 15	不带尾纤的器件,以管壳为参 照物的发射源尺寸和位置					
5- 16	规定波长之间的寄生发射电平 (适用时)	I _F 为规定值(直流或脉冲)				Max
5. 17	典型的辐射图					

注:1) 术语或文字符号正在考虑中。

- 2) 适用时。
- 3) 峰值发射半强度带宽, I_P 的规定见 5.12 条。

6 补充资料

正在考虑中。

第8节 带尾纤的激光器组件

1 类型

激光器组件由下列基本单元组成:

激光二极管;

尾纤,

光电二极管(适用时);

热传感器(适用时);

珀尔帖致冷器(适用时)。

2 半导体

2.1 材料

激光二极管: 砷化镓、镓铝砷、铟镓砷磷、磷化铟等。

光电二极管:锗、硅、铟镓砷(适用时)。

热传感器(适用时)。

珀尔帖致冷器(适用时)。

2.2 结构

激光二极管,例如:增益导引、折射率导引、分布反馈等,

3 外形与封装细节

- 3.1 引用的 IEC 和(或)国家标准的外形图号。
- 3.2 封装形式:玻璃/金属/塑封/其他。
- 3.3 引出端识别和引出端与管壳之间的任何连接的标记。
- 3.4 尾纤数据:光纤类型、保护套类型、长度。
- 3.5 管壳热沉的数据。
- 4 在整个工作温度范围内的极限值(绝对最大值)(除非另有规定)

一般条件:

- 4.1 最低和最高贮存温度 (T_{stg}) 。
- 4.2 最低和最高工作管壳温度(T_{case})。
- 4.3 最低和最高热沉温度(T_{sub})。
- 4.4 最高焊接温度(规定焊接时间和至管壳的最小距离)(T_{sld})。
- 4.5 尾纤的最小弯曲半径(r)(规定距管壳的距离)。
- 4.6 冲击(规定最大加速度和脉冲持续时间)。
- 4.7 振动(规定最大加速度和频率范围)。
- 4.8 沿着光缆轴的拉力
- 4.8.1 非密封的结构:

光纤能承受的最大拉力(F)。

光缆能承受的最大拉力(F)。

4.8.2 密封结构:

光缆能承受的最大拉力(F)。

激光二极管

30

不带珀尔帖致冷器的激光器组件,4.10~4.13 条所述参数之一必须给出降额曲线或降额系数。带珀尔帖致冷器的激光器组件,*T* sub等于 25℃。

- 4.9 最大反向电压($V_{\mathbf{R}}$)。
- 4.10 最大直流正向电流(I_{FM})。
- **4.11** 最大连续辐射功率(Φ_{eM})。
- 4.12 在规定频率和脉冲持续时间下的最大脉冲正向电流(I_{FPM})。
- **4.13** 在规定频率和脉冲持续时间下的最大脉冲辐射功率(Φ_{ePM})。 光电二极管。
- 4.14 最大反向电压(V_R)。
- **4.15** 最大正向电流(*I_F*)。 热传感器:(适用时)。
- 4.16.1 最大耗散功率(Ptot)。
- **4. 16. 2** 最大供给电压(V)。 珀尔帖致冷器:(适用时)。
- 4.17 在冷却和加热时的最大致冷器电流(IPE)。

5 光电特性

序号	特性	条 件 带珀尔帖致冷器的激光器: T_{aub} =25℃;不带珀尔帖致冷 器的激光器: T_{amb} 或 T_{case} =25℃ (除非另有规定)	符号	Ē. 2	要求
激光二极管	ř:	Mich			
5. 1	正向电压	<mark>Φ</mark> e 或 I _F 为规定值	$V_{\mathbf{F}}$		Max
5- 2	阈值电流		I _(TH)	Min	Max
5. 3	阈值时的辐射功率	$I_{\rm F} = I_{\rm (TH)}$	${\it \Phi}_{\rm e(TH)}$		Max
5. 4	超过阈值的正向电流(不带 珀尔帖致冷器的激光器组件)	$oldsymbol{arPhi}_{ ext{e}}$ 或 $\Delta I_{ ext{P}}$ 为规定值, $T=T_{ ext{case}}$ 最高或 $T_{ ext{amb}}$ 最高	$\Delta I_{ extsf{F}}$		Max
5. 5	微分效率(不带珀尔帖致冷器的激光器组件)	$oldsymbol{\sigma_{ m e}}$ 或 $\Delta I_{ m F}$ 为规定值, $oldsymbol{T} = oldsymbol{T}_{ m case}$ 最高或 $oldsymbol{T}_{ m amb}$ 最高	$\eta_{ m d}$	Min	Max
5. 6 5. 6. 1. 1 5. 6. 1. 2	光谱特性 峰值发射波长 光谱辐射带宽	$m{\phi}_{m{e}}$ 或 $\Delta I_{m{F}}$ 为规定值,连续工作 $m{\phi}_{m{e}}$ 或 $\Delta I_{m{F}}$ 为规定值,连续工作	λ_{p}^{1} $\Delta \lambda^{1}$	Min	Max Max
或 5. 6. 1. 3 5. 6. 1. 4	模距和纵模数 在调制下的峰值发射波长	$m{ heta_e}$ 或 ΔI_P 为规定值,连续工作 $m{ heta_e}$ 或 ΔI_P 为规定值,规定调制条件	$S_{ extbf{m}}$, $n_{ extbf{m}}$ $\lambda_{ extbf{p}}^{2)}$	Min	Max Max

		1	ı		
序号	特性	条 件 带珀尔帖致冷器的激光器; $T_{\mathrm{sub}} = 25 \mathbb{C}$;不带珀尔帖致冷 器的激光器: T_{amb} 或 $T_{\mathrm{case}} = 25 \mathbb{C}$ (除非另有规定)	符号	Ī	要求
5- 6- 1- 5	在调制下的光谱辐射带宽		$\Delta \lambda^{2)}$		Max
和/或		件			
5. 6. 2. 1	中心波长		<u>₹</u> 1)	Min	Max
5. 6. 2. 2	光谱辐射带宽 RMS	$oldsymbol{\phi_e}$ 或 ΔI_P 为规定值	$\Delta \lambda_{\rm rms}^{1)}$		Max
或 5. 6. 2. 3	模距和纵模数	Φ _e 或 Δ I _F 为规定值	$S_{ m m}$, $\eta_{ m m}$		Max
5. 6. 2. 4	调制下的中心波长	$\phi_{\rm e}$ 或 $\Delta I_{\rm P}$ 为规定值,规定调制条	~ m γ γ γ m λ ²⁾	Min	Max
3. 0. 2. 4	师师 T 13 T 20 4次 区	件	70	141111	Max
5. 6. 2. 5	调制下的光谱辐射带宽		$\Delta \lambda_{ m rms}^{2)}$		Max
5. 7	RMS 在规定直接调制下单模激光	件			
J- 1	器组件	9/20	3		
5. 7. 1	光谱带宽	$\phi_{\rm e}$ 或 $\Delta I_{\rm F}$ 为规定值,规定调制条	$\Delta \lambda_{\mathbf{L}}$		Max
		件			
5. 7. 2	边模抑制比	$Φ_e$ 或 $ΔI_F$ 为规定值,规定调制条	SMS	Min	
	J. W. Treet	件		-	
5. 8. 1	光谱漂移	$\Delta I_{\mathtt{F1}}$, $\Delta I_{\mathtt{F2}}$,或 $\Phi_{\mathtt{e1}}$, $\Phi_{\mathtt{e2}}$ 为规定值	$\Delta \lambda_{ m c}$		Max
5. 8. 2	不带珀尔帖致冷器的激光器	T _{amb} 1) 或 T _{case} 1)	$\Delta \lambda_{\mathbf{c}}$		Max
	组件的光谱漂移	T_{amb}^2 或 T_{case}^2			
5. 9. 1	上升时间,下降时间	A	$t_{ m r}$, $t_{ m f}$		Max
和/或		偏置电流 $\Delta I_{\mathbf{F}}$ 或 $\boldsymbol{\Phi}_{\mathbf{e}}$,输入脉冲电			
5- 9- 2	开通时间,关断时间	流,宽度,占空比为规定值	$t_{ m on}$, $t_{ m off}$		Max
5. 10	截止频率		fc	Min	Max
5. 11	载流子-噪声比	ΔI_{F} 或 $\boldsymbol{\phi}_{\mathrm{e}}$, Δf_{N} , f_{m} , m 和 f_{0} 为规定值	C/N	Min	
监视用光电	 电二极管				
5- 12	暗电流		$I_{\mathbf{R}(\mathbf{D})}$		Max
5. 13	光辐照时的反向电流		I _{R(e)}	Min	Max
5. 1 4. 1	电容	$V_{\mathbf{R}}$ 和 f 为规定值	C_{tot}		Max
或					
5. 14. 2	上升时间,下降时间	$Φ_e$ 或 $ΔI_P$ 为规定值, V_R 为规定值	$t_{ m r}$, $t_{ m f}$		Max
	•	•	•	•	

序号	特性	条 件 带珀尔帖致冷器的激光器: T _{sub} =25℃;不带珀尔帖致冷 器的激光器: T _{amb} 或 T _{case} =25℃ (除非另有规定)	符号	要求
5. 15. 1	跟踪误差		E_{R1}	Max
和/或		范围: 25℃~T _{case} 最低或 T _{amb} 最 低		
5- 15- 2	跟踪误差	$m{arphi}_{m{e}}$ 或 $\Delta I_{m{P}}$ 和 $V_{m{R}}$ 为规定值,温度范围: $25{}^{\circ}\!$	E _{R2}	Max
 热敏电阻		同		
5. 16	电阻	热敏电阻电流 I _k 为规定值	R	Min Max
5- 17	电阻斜率	热敏电阻电流 I_{tc} 为规定值,温度 范围 $T_{sub}(1):T_{sub}(2)$	$\Delta R/R$	Min Max
珀尔帖电	流(适用时)	4/120		1
5- 18	珀尔帖电流		IPE	Max
5- 19	珀尔帖电压	Φ _e 或 Δ <i>I</i> _F 为规定值,温度范围: T _{case} 最低, T _{case} 最高	V _{PE}	Max
			I.	

注: 1) 连续工作。 2) 调制。

6 补充资料

- **6.1** 激光二极管的辐射功率 ϕ_{∞} 对应的直流正向电流。
 - 注:带热沉的激光器芯片的辐射功率 ϕ_{∞} ,是用相同工艺和采用相同质量保证措施制造出的器件性能和可靠性的代表。
- 6.2 热敏电阻温度对致冷器电流变化的响应时间(适用时)。
- 6.3 激光二极管结区与管壳之间的热阻(不带致冷器):R_{th(j-c)}。
- 6.4 S11参数。

7 危害性

见 IEC 825 号标准。

第 9 节 用于光纤系统或子系统的 PIN 光电二极管

1 类型

用于光纤系统或子系统,带或不带尾纤的环境额定或管壳额定的 PIN 光电二极管。

2 半导体材料

硅、锗、铟镓砷等。

3 外形与封装细节

- 3.1 引用的 IEC 和(或)国家标准的外形图号。
- 3.2 封装形式:玻璃/金属/塑封/其他。
- 3.3 引出端识别和引出端与管壳之间任何连接的标记。
- **3.4** 带光纤的器件:输入光纤的结构数据,光纤最小弯曲半径,光纤的端面制备,包括连接器。例如:光纤种类,芯径,数值孔径和输出光纤的长度。

4 在整个工作温度范围内的极限值(绝对最大值)(除非另有规定)

- **4.1** 最低和最高贮存温度(T_{stg})。
- **4.2** 最低和最高环境温度或管壳温度 $(T_{amb}$ 或 $T_{case})$ 。
- **4.3** 最高焊接温度**(***T*_{sld}**)**。 规定最大焊接时间和至管壳的最小距离。
- 4.4 最大反向电压(V_R)。
- 4.5 最大正向电流(I_{FM})。
- 4.6 在环境温度或管壳温度 25℃时的最大耗散功率(Ptot)和 25℃以上的降额曲线或降额系数(Kt)。
- 4.7 光敏面上最大辐照度(E_e)。

5 光电特性

所有特性规定的 $V_{\mathbf{R}}$ 相同(除非另有规定)。

序号	特性	条 件 T _{amb} 或T _{case} =25℃ (除非另有规定)	注	符号	要求
5. 1	暗电流和 在高温下的暗电流和 在不同温度下,暗电流与 反向电压的典型关系曲线	V_R 为规 <mark>定值,E_e 或 σ_e=0 V_R 为规定值,E_e 或 σ_e=0 T_{amb}或 T_{case} 为规定值</mark>	1) 2)	$I_{ m R(D)}$	Max Max
5. 2	总电容和 总电容与反向电压的典型 关系曲线	E_{ϵ} 或 σ_{ϵ} = 0 , V_{R} , f 为规定值		$C_{ m tot}$	Max
5. 3	噪声电流	λ_{P} 和 $\Delta\lambda$ 为规定值,反向电压 (V_{R}) 为规定值,在规定的辐射功率下的特定反向电流 (I_{R}) ,规定中心频率 f_{o} 和滤波器的噪声等效带宽 (Δf_{N})		In	Max
5. 4	沿着规定机械轴的灵敏度 和不带尾纤的器件: 灵敏度的空间均匀性和灵 敏度与波长的关系	λ,V_R,E_e 或 Φ _e 为规定值 正在考虑中	1)	8	Min Max

序号	特性	条 件 $T_{ m amb}$ 或 $T_{ m case}$ =25℃ (除非另有规定)	注	符号	要求
5. 5	开关时间: 上升时间和下降时间 或: 灵敏度的截止频率	$oxed{V_{R},\lambda,R_{L}}$ 为规定值 $oxed{V_{R},\lambda,R_{L},oldsymbol{arPhi}_{e},\Delta\lambda}$ 为规定值		$t_{ m r}$, $t_{ m f}$	Max Min
5. 6	不带尾纤器件: 以规定基准面为基准的等 效光敏面积和区域				

注:1) 术语和(或)文字符号正在考虑中。

2) 适用时。

6 补充资料

正在考虑中。

第 10 节 带或不带尾纤的雪崩光电二极管(APDs)

1 类型

用于光纤系统或子系统的环境额定或管壳额定的雪崩光电二极管。

2 半导体

- **2.1** 材料 硅、锗、铟镓砷等。
- 2.2 结构

3 外形与封装细节

- 3.1 引用的 IEC 和(或)国家标准的外形图号。
- 3.2 封装形式:玻璃/金属/塑封/其他。
- 3.3 引出端识别和引出端与管壳之间的任何电连接的标记。
- 3.4 光学窗口的特性:相对于机械轴方向,相对于机械轴的位置、面积、数值孔径。
- 3.5 光纤数据:光纤的类型,防护层的种类,连接器,长度。

4 在整个工作温度范围内的极限值(绝对最大值)(除非另有规定)

- 4.1 尾纤最小弯曲半径(适用时)。
- **4.2** 最低和最高贮存温度(T_{stg})。
- 4.3 最低和最高工作环境或管壳湿度 $(T_{amb}$ 或 $T_{case})$ 。
- 4.4 最高焊接温度 (T_{sld}) (规定焊接时间和至管壳的最小距离)。
- 4.5 在环境或管壳温度为 25℃时的最大耗散功率(Ptot)和 25℃以上的降额曲线或降额系数。
- 4.6 沿着输入尾纤(光纤或光缆)轴向的最大拉力(适用时)。
- 4.7 最大反向电流(I_R)。

4.8 最大正向电流(I_F)。

5 光电特性

对于所有特性,偏置电压 $V_{\mathbf{R}}$ 都相同,它应等于测试出各器件 $V_{(\mathbf{BR})}$ 值的 0.9 倍(除非另有规定)。

序号	特性	条 件 T _{amb} 或 T _{case} =25℃ (除非另有规定)	符号	要求
5. 1	击穿电压	E_{e} 或 ϕ_{e} =0, I_{R} 为规定值	V (BR)	Min Max
5. 2. 1	暗电流1)	$E_{\rm e}$ 或 $\Phi_{\rm e}$ =0, $V_{ m R}$ 为规定值	$I_{R(D)1}$	Max
5- 2- 2	暗电流	E_{e} 或 Φ_{e} =0, V_{R} 为规定值,	$I_{ m R(D)2}$	Max
		$T=T_{ m amb}$ 最高或 $T_{ m case}$ 最高		
5. 3. 1	灵敏度 ¹⁾	V № , Φ _e , λ _p , Δλ 为规定值	8(1)	Min Max
5- 3- 2	灵敏度	V _{R1} , Φ _ε , λ _ρ , Δλ 为规定值	S(2)	Min Max
5. 4	倍增因子	V _{R1} ,V _{R2} ,λ _ρ ,Δλ,Φ _ε 为规定值	М	Min
5. 5	总电容	$V_{\mathbf{R}},f$ 为规定值, $E_{\mathbf{e}}$ 或 $\Phi_{\mathbf{e}}=0$	C_{tot}	Max
5- 6- 1	开通时间和	<i>V</i> _R , Δλ, R _L 为规定值,	$t_{\rm on}$	Max
	关断时间	Ø el:峰值辐射功率	$t_{ m off}$	Max
		Ф €2: 位移辐射功率		
5- 6- 2	小信号截止频率	V_{R} , λ_{p} , $\Delta\lambda$, σ_{e} 和 R_{L} 为规定值	$oldsymbol{f}_{\mathtt{c}}$	Min
5. 7	过剩噪声因子	$V_{R2}^2, V_{R1}, I_{P0}, \lambda_p, \Delta \lambda, M, f_o, \Delta f_N$ 为规定值	F _e	Max

注:1)适用时。

2) V_{R2}的值应很小,在该值下载流子倍增可以忽略或在该电压下器件全耗尽和达到器件的额定速度。

6 补充资料

- 6.1 反向击穿电压与温度的关系曲线。
- 6.2 灵敏度与波长的关系曲线。
- 6.3 电容与电压的关系曲线。
- 6.4 在不同温度下,倍增因子与反向电压的关系曲线。
- 6.5 在不同温度下,暗电流与反向电压的关系曲线。
- 6.6 以管壳为基准的光敏面的位置(不带尾纤器件)。
- 6.7 过剩噪声因子与反向电压的关系曲线(适用时)。
- 6.8 噪声电流与反向电压的关系曲线(适用时)。

第Ⅳ章 测试方法

1 半导体发射器件测试方法

1.1 发光二极管发光强度(I_v)

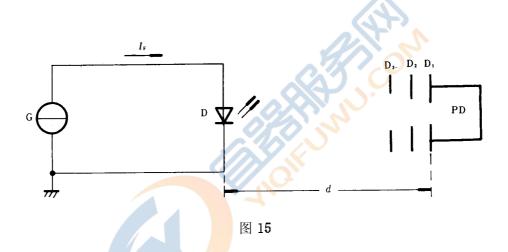
a) 目的

测试发光二极管的发光强度。

该方法可适用于三个可能的不同测试条件。

测试条件1:

二极管绕其机械轴旋转,以确定最小值和(或)最大值的位置。


测试条件 2:

二极管的光轴对准光具座的光轴。

测试条件 3:

应按照二极管管壳类型相应的基准进行定位,宜获得重复的机械方位。

b) 测试电路图

c) 电路说明和要求

- G---电流源;
- D——被测发光二极管;
- PD—光电探测器,包括面积为A的光栏 D_{1} ;
- D_2D_3 ——用于抑制寄生辐射的光栏。 D_2 和 D_3 不应限制立体角;
- d 被测二极管与 D_1 之间的距离。

在二极管发射的光波长范围内,光度计的光谱灵敏度应调到 CIE 标准观察者的曲线上。将光栏 D_1 置于适当位置 (距离为a),以坎德拉为单位对光度计进行校准。

距离 d 的大小应使得光源在光栏 D_1 处观测到的立体角 (A/d_2) 小于 0.01 sr。

当采用脉冲测试时,电流发生器应提供满足要求的幅度、持续时间和重复频率的电流脉冲。光电探测器的上升时间与脉冲持续时间相比应足够小,光电探测器应为峰值测试仪器。

d) 测试步骤

根据所选的测试条件对被测二极管进行定位。

施加规定电流,并用光电探测器测试发光强度。

e) 规定条件

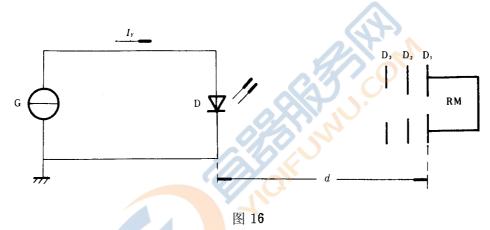
- ——环境温度和(适用时)大气条件;
- ——二极管内的正向电流和(适用时)持续时间及重复率;
- ——测试时的环境应不受外界光照影响;
- ——测试条件:1、2 或 3。
- 1.2 红外发射二极管的辐射强度(1。)
 - a) 目的

测量半导体红外发射二极管的辐射强度。

该方法可适用于三个可能的不同测试条件。

测试条件1:

二极管绕其机械轴旋转,以确定最小值和(或)最大值的位置。


测试条件 2:

二极管光轴对准光具座的光轴。

测试条件 3.

应按照二极管管壳类型相应的基准进行定位,宜获得重复的机械方位。

b) 测试电路图

- c) 电路说明和要求
- G——电流源;
- D——被测的红外发射二极管;

RM — 辐射计,包括面积为 A 的光栏 D_{1} ;

 D_2D_3 ——用于抑制寄生辐射的光栏, D_2 和 D_3 不应限制立体角;

d 一被测二极管与 D_1 之间的距离。

应使用与波长无关的探测器(例如热偶元件)测量管壳轴向辐射强度 I_{\bullet} ,将光栏 D_1 置于适当的位置 (距离为d),以 W/sr 为单位对辐射计进行校准。

距离 d 的大小应使得红外光源在光栏 D_1 处观测到的立体角 (A/d_2) 小于 0.01 sr。

当进行脉冲测量时,电流发生器应提供满足要求的幅度、持续时间和重复频率的电流脉冲。辐射计的上升时间与脉冲持续时间相比应足够小。辐射计应为峰值测试仪表。

d) 测试步骤

根据所选的测试条件对被测二极管进行定位。

给二极管施加规定的电流,并用辐射计测试辐射强度。

- e) 规定条件
- ——环境温度和(适用时)大气条件;
- ——二极管中的正向电流和(适用时)持续时间及重复率;

测试条件:1、2 或 3。

- **1.3** 带或不带尾纤的发光二极管(**LED**)、红外发射二极管(**IRED**)和激光二极管的辐射功率或正向电流
 - a) 目的

在规定条件下,测量带尾纤或不带尾纤的发光二极管(LED)、红外发射二极管(IRED)和激光二极管的辐射功率 $\Phi_{\mathbf{e}}$ 或正向电流 $I_{\mathbf{F}\mathbf{e}}$

- b) 测试装置(见图 17)
- c) 装置的说明和要求

器件所发出的辐射在积分球的内壁上受到多次反射使得在表面上产生与辐射功率成正比的均匀辐照度。置于球壁中的探测器可测得该辐照度。不透明屏保护探测器不受被测二极管的直接照射。

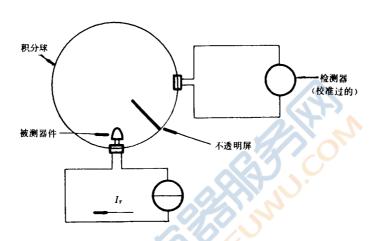


图 17

d) 注意事项

- ——被测器件、屏和孔径与球表面相比应很小。球的内表面和屏表面应具有一层高均匀反射系数 (最小 0. 8)的漫反射涂层。
 - ---球和探测器在安装后要校准。
 - ——应考虑因功率耗散引起的峰值发<mark>射波</mark>长和辐射功率的变化**。**
 - ——当对被测器件进行脉冲测试时,探测器测出的是辐射平均值。
 - e) 测试步骤

将发射器件完全插入球内,这样器件发出的辐射就不会直接达到探测器上。

测量辐射功率时,给器件施加规定的正向电流 /,记下探测器的读数。

测量正向电流时,给器件施加电流直到达到规定的辐射功率(Φ_e)为止,所指示的就是正向电流值。

- f) 规定条件
- ——环境或管壳温度;
- ——辐射功率(测试正向电流时);
- ——正向电流(测试辐射功率时)。
- 1.4 峰值发射波长 (λ_{p}) ,光谱辐射带宽 $(\Delta\lambda)$ 和纵模数 (n_{m})
 - a) 目的

测试发射器件的峰值发射波长和光谱辐射带宽以及激光二极管的纵模数目。

b) 测试电路图

图 18

- c) 电路说明和要求
- D---被测器件;
- L---聚焦透镜系统;
- G——电流发生器(脉冲或直流);
- M----单色仪;
- D_2D_3 ——适用时,用于抑制寄生辐射的光栏;
- RM 辐射计(含光栏 D₁)。

单色仪的波长分辨率和带宽应使得所进行的测试有足够的精度。

辐射计的光谱响应应进行校准。为便于测试,应使曲线的峰值为100%。

d) 注意事项

- ——如果单色仪的传输系数和辐射计灵敏度在要求的波长范围内不是常数,则记录值应予修正。
- ——对于激光二极管的测量,反射入激光二极管的辐射功率应尽量小,以保证光谱响应不受影响。
- e) 测试步骤
- 1)发光二极管、红外发射二极管或单模激光二极管的峰值发射波长和光谱辐射带宽的测试给被测器件施加规定电流。

在要求的范围内,用单色仪调节波长,直至辐射计达到最大读数,记下相应于该峰值的波长(%)。

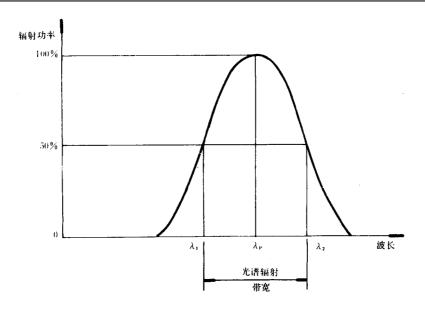


图 19 辐射功率与波长的关系

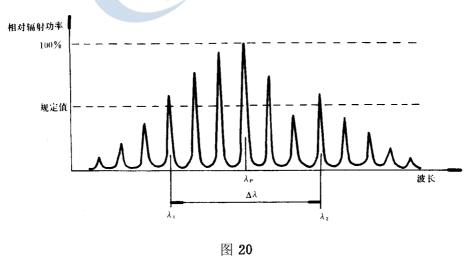
然后在 λ_n 的两边调节单色仪的波长,直到辐射计的读数为最大值的一半,记下这两个波长(见图 19上的 λ_n 和 λ_n)值。两者之差即为红外发射器件或发光器件的光谱辐射带宽(见图 19)。

2) 多模激光二极管的峰值发射波长,光谱辐射带宽和纵模数的测试。

2.1) 多模激光二极管的峰值发射波长

给被测器件施加电流使之达到相应的规定光功率

在要求的范围内,用单色仪调节波长,直至指示出不同最大值的最高点。


记下相应于该最高读数所对应的波长,即峰值发射波长(26)(见图 20)。

2.2) 多模激光二极管光谱辐射带宽

单色仪从长波开始,逐渐调节到短波,记下按 e)2.1)所述方法,达到或超过最高输出百分比的第一个波长,然后将单色仪从短波逐渐调节到长波,记下按 e)2.1)所述方法,达到或超过最高输出规定百分比的另一个波长。这两个值之间的差就是激光二极管的光谱辐射带宽 $(\Delta\lambda)$ 。

2.3) 多模激光二极管的纵模数

按 e)2. 2)测试光谱辐射带宽后,就可计算出含有带宽边界两个模式在内的纵模数目 (n_m) 。

f) 规定条件

发光二极管和红外发射二极管:

- ——环境或管壳温度**;**
- ——规定的正向电流(直流或脉冲)。

激光二极管:

- ——环境**、**管壳或热沉温度;
- ——辐射功率或正向电流:
- ——除50%以外,峰值发射的百分比。
- 1.5 带或不带尾纤的红外发射二极管和发光二极管的开关时间
 - a) 目的

测量带或不带尾纤的红外发射二极管和发光二极管的开通时间 t_{on} (开通延迟时间 $t_{d(on)}$ 十上升时间 t_{r})和关断时间 t_{off} (关断延迟时间 $t_{d(off)}$ 十下降时间 t_{f})。

b) 测试电路图

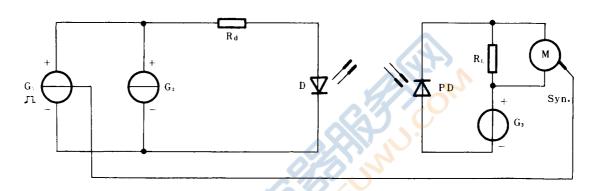


图 21

c) 电路说明

 G_1 ——具有高阻抗的电流脉冲发生器;

G₂——直流电流偏置源;

G₃——直流电压偏置源;

R_d——与发生器阻抗相匹配的电阻;

D---被测器件;

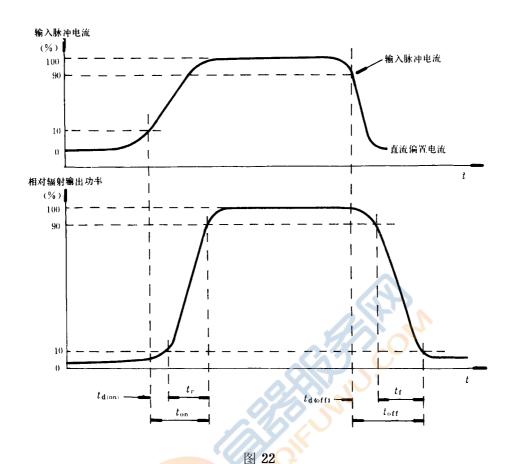
PD——光电二极管;

R_L——负载电阻;

M ——测量仪器;

Syn——同步信号。

d) 注意事项


- ——为了不影响测试精度,光电二极管的开关时间、测试电路和测量仪器的延迟时间、输入电流脉冲的上升和下降时间等都应足够短,以不响应测量精度。
- ——在光脉冲顶部(见图 **22**)获得的平均输出功率也许不等于直流偏置和输入脉冲电流之和的连续辐射功率。
 - ——应考虑被测器件的光学窗口。
 - e) 测量步骤

给被测器件施加规定的直流和脉冲电流。

用仪器 M 测量开关时间。

42

100%电平是在辐射脉冲顶部获得的平均输出功率,0%电平是在直流偏置电流下获得的输出功率。

*t*_{d(on)}—开通延迟时间;*t_t*—下降时间;*t_t*—上升时间;*t_{on}*—开通时间; *t*_{d(off)}—关断延迟时间;*t_{ott}*—关断时间

- f) 规定条件
- ——环境或管壳温度**;**
- ——直流偏置电流;
- ——输入脉冲电流、宽度和占空比;
- ——光学窗口;
- ——光路图**。**
- 1.6 带或不带尾纤的发光二极管(LED)、红外发射二极管(IRED)和激光二极管的小信号截止频率 $f_{\mathbf{c}}$
 - a) 目的

在规定条件下,测量带或不带尾纤的发光二极管(LED),红外发射二极管(IRED)和激光二极管的小信号截止频率。

b) 测试电路图

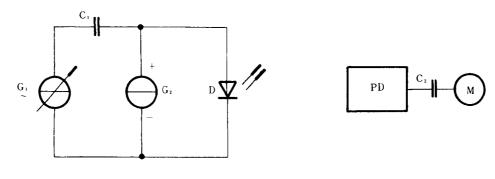


图 23

- c) 电路说明和要求
- D——被测器件;
- G_1 频率可调的交流发生器;
- G₂——电流发生器;
- PD——光电探测器;
- M——交流辐射功率测量仪;
- C_1, C_2 耦合电容。
- d) 注意事项

应尽量减小反射入激光二极管的辐射功率,以防止失真对测试精度的影响。光电探测器的频率响应必须大于截止频率 f_{c} 。

e) 测试步骤

被测器件是发光二极管和红外发射二极管时,施加规定的正向直流电流或规定功率所需的正向直流电流。

被测器件是激光二极管时,施加正向电流等于阈值电流以上某一正向电流值或达到规定的辐射功率所需的正向直流电流。

用低频(低于 $f_c/100$)发生器 G_1 调制上述正向直流电流,用M测量交流辐射功率。

在调制幅度保持恒定的条件下,增加调制频率直至在测量仪器M上读出交流辐射功率下降一半时的频率就是小信号截止频率 (f_c) 。

f) 规定条件

对于发光二极管(LED)和红外发射二极管(IRED):

- ---环境或管壳温度;
- ——直流正向电流或辐射功率**。**

对于激光二极管:

- ——环境**、**管壳或热沉温度;
- ——直流正向电流和阈值电流之间的差值或辐射功率。
- 1.7 带或不带尾纤的激光二极管的阈值电流
 - a) 目的

测量带或不带尾纤的激光二极管的阈值电流。

b) 测试电路图

(见图 24)。

- c) 电路说明和要求
- D---被测器件;
- PD——测量入射辐射功率的探测器;

A——电流计;

G---发生器(直流或脉冲)。

采用脉冲测量时,电流发生器提供满足振幅、持续时间和重复频率要求的电流脉冲。

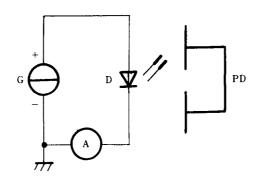
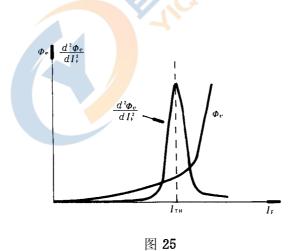


图 24

d) 注意事项

反射入激光二极管的辐射功率应尽量小。不能超过激光二极管的极限值 $(I_{\mathbf{F}}$ 和 $\Phi_{\mathbf{e}})$ 。


e) 测试步骤

给二极管施加正向电流,记下二极管辐射功率与正向电流的关系曲线。

确定辐射功率与正向电流关系曲线的二阶导数曲线,该曲线上第一个极大值对应的电流,即是阈值电流(I_(TH))。(见图 **25**)

f) 规定条件

- ——环境**、**管壳或热沉温度;
- ——脉冲测量:正向电流的重复频率、脉冲持续时间。
- 1.8 带或不带尾纤的发光二极管(LED)、红外发射二极管(IRED)和激光二极管的相对噪声强度

a) 目的

在规定条件下测量带尾纤或不带尾纤的发光二极管(IED),红外发射二极管(IRED)和激光二极管的相对噪声强度。

b) 测试电路图

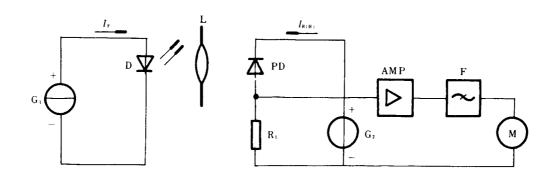


图 26

c) 电路说明

G₁——直流电流发生器;

D---被测器件;

L--透镜系统;

 $I_{\mathbf{F}}$ ——正向电流;

PD--光电探测器;

 R_L 一 负载电阻;

 $I_{R(H)}$ ——在光照下,探测器的反向电流;

G₂——直流偏压发生器;

AMP——增益为 G 的交流放大器;

 \mathbf{F} —中心频率 f_0 和等效噪声带宽 Δf_N 的滤波器;

M——测量仪器(例如:电平表等)。

d) 注意事项

应尽量减小反射入激光二极管的辐射功率,以避免失真影响测试精度。

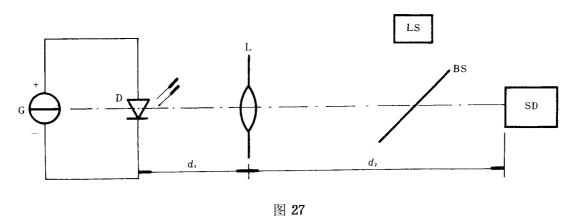
e) 测试步骤

给被测器件施加能够发射规定辐射功率 Φ_e 的正向直流电流,用测试仪器 M 测量噪声功率 N_t ,同时测量光电探测器的反向电流 $I_{R(H)}$ 。

用具有同样波长范围的宽光谱辐射带宽的辐射光源代替被测光发射器件。

调节辐射源的发光功率,使光电探测器的反向电流达到前面测量时的同一数值,用测试仪器测量相当于光电探测器杂散噪声与放大器噪声之和的噪声功率 N_{do}

相对噪声强度(RIN)由下式算出:


$$RIN = (N_t - N_d)/(R_L \cdot G \cdot \Delta f_N \cdot I_{R(H)})$$

单位 Hz-1

- f) 规定条件
- ——环境**、**管壳或热沉温度;
- ——辐射功率;
- ——中心频率和等效噪声带宽。
- 1.9 不带尾纤的激光二极管发射源的高度、宽度和像散
 - a) 目的

测试规定轴上激光二极管发射源的尺寸和光束的像散。

b) 测试装置

c) 装置说明和要求

- G---电流源;
- D--被测器件;
- L---透镜系统;
- SD---带狭缝的扫描光电探测器;
- LS——带有滤光片的光源或发射波长接近被测器件波长的 LED
- BS——光束分离器;

 $d_2 \gg d_{10}$

d) 注意事项

在光源LS和器件D的波长的范围内,透镜系统L应无色差。

e) 测试步骤

发射源尺寸:

开启 LS,调节透镜系统 L,在探测器 SD 上获得器件 D 前端面的聚焦像,并读取距离 d_1 和 d_2 的值。给被探测器件 D 施加规定的直流电流或与辐射功率值 Φ 。相对应的直流电流。

沿聚焦像的长轴和短轴方向调节光电探测器 SD 的扫描方向。

光电探测器 SD 沿着长轴和短轴扫描,发射光源的长度和宽度等于长轴和短轴 3 dB 功率点之间的距离乘以 d_1/d_2 。

象散 d▲:

开启 LS,调节透镜系统 L,在探测器 SD 上获得器件 D 前端面的聚焦像,读出距离 d_1 和 d_2 值。 光电探测器的扫描方向与 SD 聚焦像的长轴和短轴对准。

在光轴线上向器件 D 移动透镜系统 L,直到沿长轴方向光源长度为最小。

测量透镜系统移动的距离 d30

透镜系统回到起始点,在短轴上重复上述步骤。测出透镜系统 L 移动的距离 d4。

 d_3 , d_4 之差乘以 $(1-d_1^2/d_2^2)$ 即是象散。

f) 规定条件

- ——环境**、**管壳或热沉温度;
- ——直流正向电流或辐射功率;
- ——参考轴线(长轴和短轴)。

1.10 带或不带尾纤的激光二极管的开关时间

a) 目的

在规定条件下,测量带或不带尾纤的激光二极管的开关时间(开通延迟时间 ta(m),上升时间 tr、关断

延迟时间 $t_{\mathbf{d}(\mathbf{off})}$ 、下降时间 $t_{\mathbf{f}}$)。

b) 测试电路图

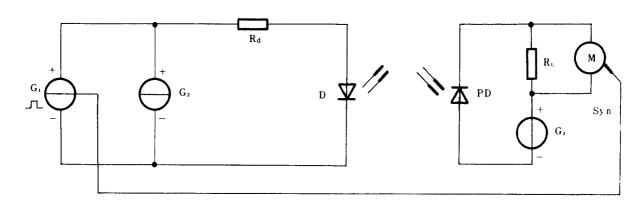
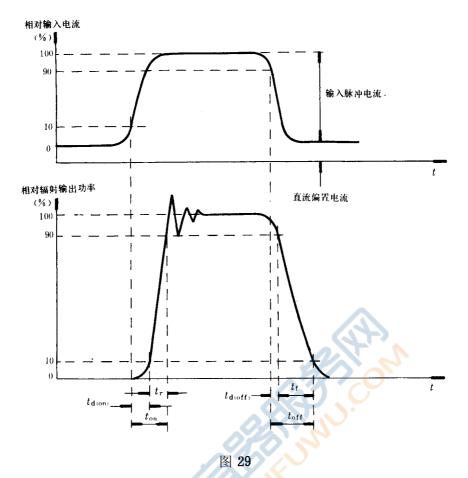



图 28

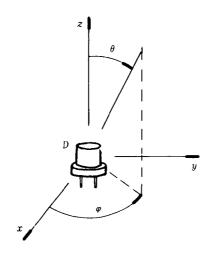
- c) 电路说明
- G1---电流脉冲发生器;
- G_2 ——直流电流偏置源;
- G₈——直流电压偏置源;
- R_d——与发生器阻抗相匹配的电阻;
- D---被测器件;
- PD--光电二极管;
- R_L 一 负载电阻;
- M —— 能同时测量输入和输出波形的测量仪器;
- Syn——同步信号。
- d) 注意事项
- ——反射入激光二极管的辐射功率应尽量小。
- ——为了避免热效应,应选择脉冲宽度和占空比。
- ——应避免开/关电路的浪涌电流,并避免与带静电的物体接触。
- ——直流电流 G_2 应具有很高的阻抗,以不致使电流脉冲发生器 G_1 的输出产生失真。
- ——光电二极管 PD 的开关时间、测试电路和测试仪器的延迟时间应很小,以不致影响测试精度。
- e) 测试步骤

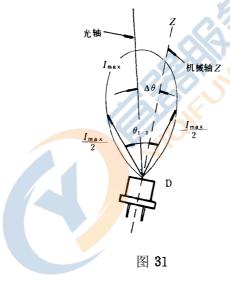
给被测器件施加规定的直流和脉冲电流。用测试仪器测量 $t_{d(on)}$, t_r , $t_{d(off)}$, t_f 的值。

注:相应辐射输出脉冲顶部的平均输出功率也许不等于直流偏置和输入脉冲电流之和的连续辐射光功率。

- 注:① 除非另有规定,在图 29 中给出了开关时间。100%电平是在光脉冲顶部获得的平均输出功率,0%电平是在直流偏置电流下获得的输出功率。
 - ②除非另有规定,上升时间4,和下降时间4,定义在平均辐射输出功率的10%~90%之间。
- f) 规定条件
- ---环境、管壳或热沉温度;
- ——偏置电流或辐射功率;
- ---输入脉冲电流宽度和占空比。
- 1.11 光发射器件的半强度角和角偏差
 - a) 目的

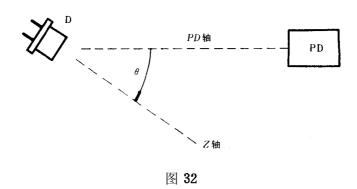
测试光发射器件辐射强度的空间分布。




图 30

x 轴和y 轴限定了被测器件D 的机械参考面,即安装面。

角 φ 限制了器件D在平面上的方位。


发光或辐射强度大于或等于最大辐射强度一半时的角,叫半强度角。半强度角 $\theta_{1/2}$ 在规的平面内由 φ 而定。

角偏差 $\Delta\theta$ 是光轴和机械轴之间的夹角。

d) 测试装置图

在下图中给出最基本的光学布局和定义。

- c) 测试装置说明和要求
- D---被测器件;
- PD---光电探测器;
- **Z**轴——被测器件的机械轴线:
- PD 轴——光电探测器的轴线;
- θ —Z 轴和 PD 轴间的夹角。
- 注:由被测器件和光电二极管孔径确定的立体角应很小。在立体角被半分而测量结果无重大变化的情况下,应认为立体角很小。

被测器件 D 应安装在夹具上,允许:

器件 D 精确的重复定位;

改变 θ 角能保持器件D光学窗口中心不变;

可测量夹角 θ ;

器件绕其 Z 轴旋转;

可测量相对于x 轴旋转的角。

d) 注意事项

正在考虑中。

e) 测试步骤

给被测器件施加规定的电流。

器件 \mathbf{D} 的机械轴与光电探测器的轴对准,即 $\theta = 0$,测量光电探测器的信号电流,其值设定为 $I_0 = 100\%$ 。

将器件**D** 倾斜画出相对光强 I/I_0 与 θ 的曲线。

优先选择极座标形式画出,当空白详细规范规定时,也可使用笛卡尔座标。

半强度角 $\theta_{1/2}$ 是 $I=1/2I_{max}$ 两点之间的夹角。角偏差是 I_{max} 和 I_0 之间的夹角。

- f) 规定条件
- ——环境**、**管壳或热沉温度;
- $--I_{\mathbf{F}}$ 或 $\Phi_{\mathbf{e}}$;
- ——机械参考平面;
- ——角 **ợ。**
- 1.12 带或不带尾纤的发光二极管、红外发射二极管、激光二极管和激光器组件的载流子与噪声比
 - a) 目的

在规定的调制条件下,用规定的辐射功率电平(CW)测量载流子与噪声比。

b) 测试框图

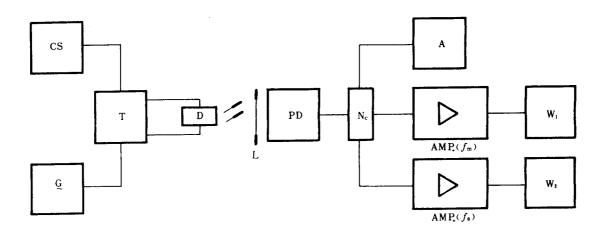


图 33

- c) 电路说明和要求
- CS——直流电流源;
- D---被测器件;
- G---交流发生器;
- T——偏置T或无源偏置电路;
- L---聚焦透镜系统:
- PD---光电探测器;
- A——电流测量仪;

 $AMP(f_m)$ — 适用于频率 f_m 的放大器;

 W_1 ——功率计;

 $AMP(f_0)$ — 适用于频率 f_0 的放大器和滤波器;

 W_2 ——功率计;

Nc——阻抗匹配和信号分配网络。

d) 注意事项

在波长范围内,用辐射功率计单位校准"光电探测器+安培计"。(在考虑中) 应设计聚焦系统:

- ——防止辐射反射入激光二极管或激光器组件;
- ——被测器件的光通路焦点应对准光电探测器的光窗面。
- e) 测试步骤

给被测器件施加规定的电源和驱动条件。

测试并记录光电探测器被照射(规定 Φ_e)时所产生的光电流($I_{R(e)}$)。通过偏置电路给被测器件施加 R. F. 调制,其调制频率为 f_m 的正弦波,调制深度m。用功率计 W_1 测量 f_m 频率下的电功率 P_1 。功率 P_1 与调制辐射功率的平方的关系式如下:

$$(\Delta \Phi_{\rm m})^2 = P_1/(S^2 \cdot R_{\rm C})$$

式中: 8—光电探测器 PD 的灵敏度;

 $R_{\rm c}$ ——PD 的负载电阻(AMP($f_{\rm m}$)的输入阻抗)。

用功率计 W_2 测量频宽 Δf 中频率 f_0 的噪声电功率 $N_{\rm tot}$ (从专业术语定义, f_0 应尽可能接近 $f_{\rm m}$)。噪声电功率 $N_{\rm tot}$ 等于光电流 $I_{\rm R(e)}$ 有关的散粒噪声加上辐射源强度波动产生的过剩噪声之和。用一个"宽带

光谱"辐射源测量出同样照射($I_{R(e)}$ 相同)下的净的散粒噪声。用 W_2 测出与散粒噪声相等的噪声功率,即辐射功率波动(N_s):

$$\begin{split} (C/N)_{\text{lin}} &= (\Delta \Phi_{\text{m}})^2/(\Delta \Phi_{\text{e}}^2) \\ &= [P_1/(N_{\text{tot}} - N_{\text{s}})](\Delta f) \\ & \implies (C/N) = 10 \log_{10}(C/N)_{\text{lin}} \end{split}$$

- f) 规定条件
- ——环境**、**管壳或热沉温度;
- ——测量的偏置条件(Φ_e 、 I_P 或 ΔI_P);
- ——频率和带宽 $(f_0, \Delta f)$;
- ——驱动频率(fm);
- ——调制深度(m)。
- **1.13** 带或不带尾纤的发光二极管、红外发射二极管、激光二极管和激光器组件的 S_{11} 参数
 - a) 目的

在规定辐射功率电平和频率下,测试器件输入特性的实部和虚部(模数和相位)。

$$S_{11} = V_{\rm rl}/V_{\rm sl}$$

等效方程如下:

$$S_{11} = (Z_i - Z_0)/(Z_i + Z_0)$$

式中: Z_i —被测器件的输入阻抗;

 Z_0 —测试仪器的特征阻抗。

b) 测试电路图

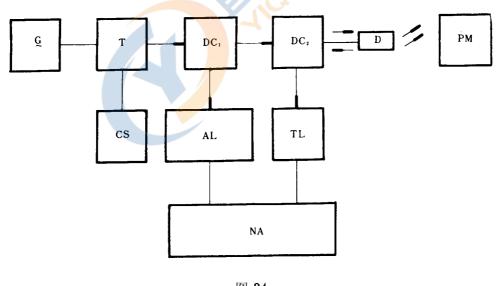


图 34

c) 电路说明和要求

G----RF 发生器;

T--偏置电路;

CS——直流电流源;

 DC_1 —正向耦合器;

DC2---反向耦合器;

AL 一可调传输线:

NA — 网络分析仪;

D--被测器件;

PM——辐射功率计;

TL——测试传输线。

d) 注意事项

在规定频率范围内,传输线、发生器、衰减器、器件测试插座、T 偏置电路的特性阻抗应和负载(通常 50Ω)相匹配。

RF 功率保持很低,以使被测器件D线性工作。

保持器件 D 的光通路与功率计 RM 对准。

e) 测试步骤

校准:

可调传输线应与测试传输线平衡。

被测器件的插座与输入线短路连接。

交流信号频率在规定频率 f_1 周围扫描,改变可调线的长度,在史密斯阻抗圆图上获得一个 g_{11} 点 (模数等于 1,相位等于 180°)。

测量:

用被测器件取代"校准"的短路线,按规定(Φ_{e} 、 T_{case} 或 T_{and} 、 T_{sud})施加偏置,读出被测器件 D 的反射系数 S_{11} 的值。

- f) 规定条件
- ——环境**、**管壳或热沉温度;
- ——电源和驱动条件: Φ_e 或 I_F 或 ΔI_F 、f、m(调制深度)。
- 1.14 带尾纤、带或不带致冷器的激光器组件的跟踪误差
 - a) 目的

在规定的温度范围内,测试激光器组件光纤 输出辐射功率和监视二极管光电流之间统调比的最大变化。

b) 测试电路图

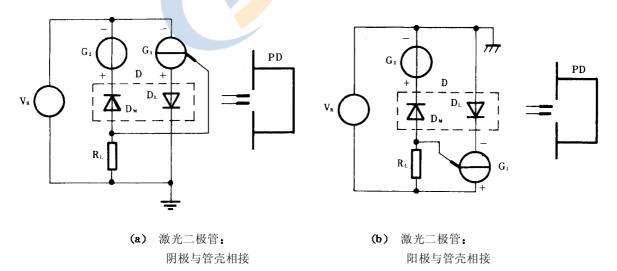


图 35

c) 电路说明和要求

D---被测器件;

PD 一 校准(用瓦特)了的光电探测器;

G1---直流电流源,通过负反馈监视光电二极管提供的光电流;

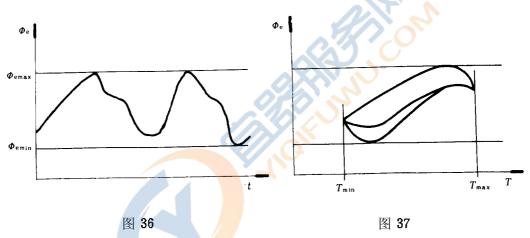
G₂——直流电压源;

R_L——负载电阻;

V_R——直流电压表;

D_L——激光二极管;

 D_{M} — 监视光电二极管。


d) 注意事项

应尽量减小反射入激光二极管的光辐射功率。

在规定的 T_{sub} 时,管壳温度的变化应尽量小,以保证组件内部和带致冷器组件的管壳中产生的热平衡稳定。

e) 测试步骤

在每个测量点,调节电流 G₁ 直到 25℃下监视器的光电流等于规定的光辐射功率所得的电流为止。 在规定范围内扫描管壳温度,画出时间(图 36)或管壳温度(图 37)与输出功率曲线。

跟踪误差由下式给出:

$$E_{\mathrm{R1}} = \frac{\Phi_{\mathrm{e25}\mathrm{C}} - \Phi_{\mathrm{emin}}}{\Phi_{\mathrm{e25}\mathrm{C}}} \times 100\%$$

$$E_{\mathrm{R1}} = \frac{\Phi_{\mathrm{emax}} - \Phi_{\mathrm{e25}\mathrm{C}}}{\Phi_{\mathrm{e25}\mathrm{C}}} \times 100\%$$

f) 规定条件

- ——25℃时的 Φ_e 或 Δ*I*_F;
- ——管壳或环境温度范围 $T_{\text{casemin}}/T_{\text{casemax}}$; $T_{\text{ambmin}}/T_{\text{ambmax}}$;
- ——适合时,热沉温度 (T_{sub}) ;
- ——监视光电二极管 (D_{M}) 的偏置电压 $(V_{R})_{o}$

1.15 带或不带尾纤激光二极管的光谱线宽

a) 目的

测试带或不带尾纤激光二极管的光谱线宽。

b) 测试电路图

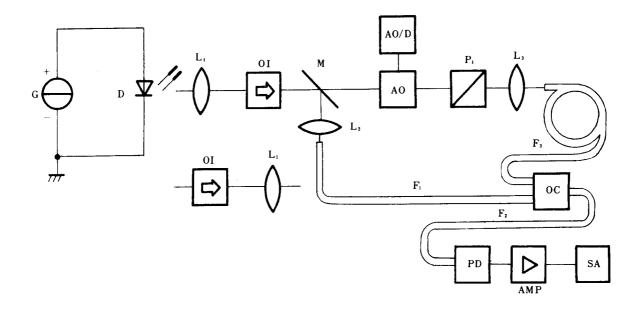


图 38

c) 电路说明

G---直流电流源;

D---被测器件;

 L_1 、 L_2 、 L_3 =透镜;

OI——光隔离器:

AO——声光调制器;

AO/D—声光调制器的驱动器;

M---反射镜;

P1---偏振光调节器;

 F_1 、 F_2 、 F_3 = 单模光纤;

oc——光耦合器;

AMP--放大器;

SA——光谱分析仪;

PD——探测器。

d) 注意事项

应尽量减小反射入激光二极管的辐射功率。

 F_8 的长度应足够长,以获得比被测器件D 的光谱线宽高得多的分辨能力。调制频率应高于器件的光谱线宽。

规定的直流电流应稳定,使测试器件 D 的线宽时不会变宽。

注:通过频率分辨率决定光纤F3的长度:

分辨率: $\frac{0.75c}{\pi Ln}$

式中: c--光速;

n---F₃ 的折射率;

L——光纤 **F**₃ 的长度。

e) 测试步骤

给被测器件D施加阈值以上的直流电流($\Delta I_{\mathbf{F}}$)或相应辐射功率($\boldsymbol{\sigma}_{\mathbf{e}}$)的正向电流。调节器件D的光通路,使最大的辐射功率进入光纤 $\mathbf{F}_{\mathbf{1}}$ 和 $\mathbf{F}_{\mathbf{3}}$ 。

在光谱分析仪上观测相应于调制器 AO 的调制频率的峰值,转动 P_1 得到一个最大辐射功率。测量峰值的半最大值全宽,即是器件 D 光谱线宽的两倍。

- f) 规定条件
- ——环境、管壳或热沉温度。
- ——阈值以上的正向电流 $\Delta I_{
 m F}$ 或辐功率 $\Phi_{
 m e}$ 。

2 光电探测器件的测试方法

- **2.1** 带或不带尾纤的光电二极管,光照下的反向电流 $(I_{\mathbf{R}(\mathbf{H})}$ 或 $I_{\mathbf{R}(\mathbf{e})})$ 和光电晶体管光照下的集电极电流 $(I_{\mathbf{C}(\mathbf{H})}$ 或 $I_{\mathbf{C}(\mathbf{e})})$ 。
 - a) 目的

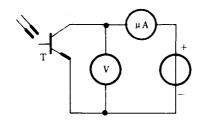
测试带或不带尾纤的光电二极管光照下的反向电流,光电晶体管和光照下的集电极电流。

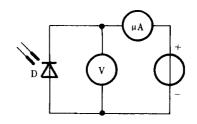
b) 测试装置

采用下列四个不同条件之一:


测试条件 1: 器件绕其机械轴旋转,以确定最大值和最小值的位置。

测试条件 2: 器件光轴对准光具座的光轴。


测试条件 3:按器件封装类型所规定的基准进行定位,宜获得重复的机械方位。


测试条件 4: 带尾纤器件。

用聚焦方法对准器件的光学窗口以接收辐射功率。

c) 测试电路图

(a) 光电晶体管

(b) 光电二极管

图 40

d) 测试装置的说明和要求

用一测试插座将被测器件安装在校准过的光具座上(测试条件1、2、3或4)或安装在校准过的测试装置上(测试条件3)。

光源应为:

- 1) 标准光源(非单色光源),它包括校准过的标准灯及其稳压电源和电流表,或
- 2) 单色光源,包括:

如上述 1)条所述的装置上,附加一个具有规定的或已知的峰值发射波长和光谱辐射带宽的干涉滤 光器或任何其他系统(单色仪等)。或

其他具有已知峰值发射波长和光谱辐射带宽并经校准的任一器件**(**例如:发光二极管或红外发射二极管**)。**

带尾纤的光学器件应使用 2)条所述的光源。

- e) 注意事项
- ——应避免由于光的辐射引起被测器件过热,在超过 200 W/m²时,建议安装隔热板作为快门,以限制曝光的持续时间。
 - ——应保证光学面的清洁度。
 - ——光源应该稳定。
 - ——当用标准光源作光源时,应把抑制寄生辐射的光栏置于被测器件的前面。

带尾纤的器件:

- ——应照射器件的光学窗口。
- f) 测试步骤

将温度调到规定值。

管座放在离光源一定距离的地方,该处应有规定的照度(辐照度)。

被测器件插入管座,并加规定的偏置。

对测试条件1,器件绕其机械轴旋转,在电流表上读出光照下电流的最大和最小值对测试条件2、3或4,在电流表上读出光照下的电流值。

- g) 规定条件
- ——环境或管壳温度;
- ——被测器件的偏置(直流或脉冲);
- ——测试条件;
- ---照度或辐照度;

- 一标准光源(非单色光源)或规定了波长和光谱辐射带宽的单色光源)。 带尾纤器件:
- ——环境或管壳温度**;**
- ——被测器件的偏置;
- ——进入光学窗口的辐射功率;
- ——光源的波长和光谱辐射带宽。
- 2.2 光电二极管的暗电流 $I_{\mathbf{R}(\mathbf{D})}$ 和光电晶体管的暗电流 $I_{\mathbf{CEO}}$, $I_{\mathbf{EEO}}$
 - a) 目的

在规定条件下,测试光电二极管和光电晶体管的暗电流。

b) 测试电路图

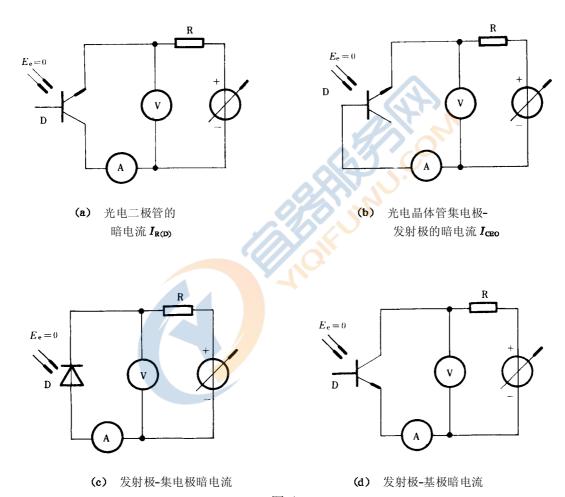


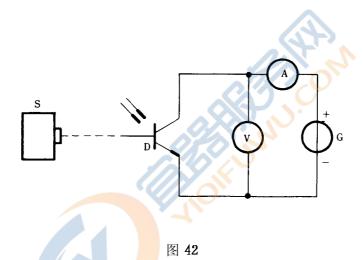
图 41

- c) 电路说明和要求
- R----限流电阻;
- D-被测器件。
- d) 注意事项

——这些参数与温度有十分密切的关系,测量精度在很大程度上取决于能否保持环境温度。完全蔽 光是一个必要条件,即使是普通的日光照射在穿过封装玻璃绝缘子的金属连线上,也会导致错误的测量 结果。

- ——在光谱灵敏度范围内,器件不应经受辐射。
- e) 测试步骤

温度置于规定值,器件处于全黑,电压从零逐渐增加到规定值,然后测量暗电流。当电流达到规定时,停止测量。


- f) 规定条件
- ——环境温度**、**湿度。

施加电压:

- —— I_R 的 V_R 值
- ——Iceo的 V ce 值
- $---I_{ECO}$ 的 V_{EC} 值
- ——I_{EBO}的 V_{EB}值
- 2.3 光电晶体管的集电极-发射极饱和电压 V CE (sat)
 - a) 目的

在规定条件下,测试光电晶体管的集电极-发射极饱和电压。

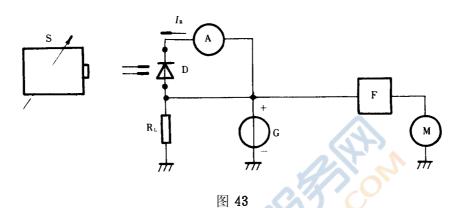
b) 测试电路图

- c) 电路说明和要求
- s——光辐射源;
- G---集电极电流发生器;
- D---被测器件;
- A----电流表;
- V---电压表。
- d) 注意事项
- ——应避免由于辐射光源的辐射引起被测器件过热。当超过 200 W/m² 时,应采用隔热板作为快门,以限制曝光的持续时间。
 - ——应保证光学面的清洁度。
 - ——在测量前,光源应保持稳定。
 - e) 测试步骤

温度设定到规定值。

辐射光源稳定在 E。或 E、值,集电极电流调节到规定值,再开始测量集电极-发射极饱和电压。

- f) 规定条件
- ——环境温度**;**


- ——集电极电流;
- ——照度或辐照度;
- ——标准光源(非单色光源)或规定了波长和光谱带宽的单色光源;
- ——基极开路。

2.4 PIN 光电二极管的噪声

a) 目的

在规定条件下,测试 PIN 光电二极管的噪声电流、噪声功率,探测率或噪声等效功率(NEP)。

b) 测试电路图

- c) 电路说明和要求
- S---辐射源或光源;
- D-被测器件;

 $I_{\mathbf{R}(\mathbf{H})}$ —— 光照下的反向电流;

 R_L 一负载电阻(最好取 50Ω);

A——电流表:

G---反向电压源;

 \mathbf{F} ——具有规定的最大传输频率 (\mathbf{v}_{0}) 中心频率 \mathbf{v}_{0} 和规定的等效噪声带宽 Δf_{N} 的滤波器;

M——用噪声电流、噪声功率、探测率或等效噪声功率校准精确的方均根值读出仪器。

- d) 注意事项
- 1) 考虑到 D 的电容,测试仪器的输入电容等一些参数,应规定滤波器的带宽。
- 2)包括辐射源或光源等测试仪器的噪声与测量的噪声相比应很小,或在测试结果中加以考虑。
- 3) 当噪声电平很低以至不能直接测量出,可采用下述的放大和同步检测技术:

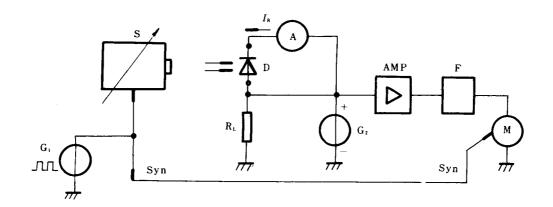


图 44

 G_1 ——调制发生器,方波(δ =0.5),频率 f_1 ;

s——辐射源或光源;

D---被测器件;

 R_L 一负载电阻;

A——电流表;

G₂——反向电压源;

AMP---交流放大器;

 \mathbf{F} ——滤波器(中心频率 f_0 ,等效噪声带宽 Δf_N);

M——方均根值读出仪器;

Syn——同步信号。

注:① f_1 低于 f_0 (滤波器F的中心频率)。

② 滤波器 F 抑制 f₁ 频率。

e) 测试步骤

校准测量仪器,给被测器件D施加规定的反向电压。从零开始增加辐射源或光源的辐射通量,直到规定值 $I_{R(D)}$,在读出仪器 M 上读出器件D 的噪声。

- f) 规定条件
- ——环境温度**;**
- ——光源的辐射特性:峰值发射波长 λ_e 和光谱带宽 Δλ 或光谱分布图(例如光源 A);
- ——反向电压(V_R);
- ——在光照下的反向电流($I_{\mathbf{R}(\mathbf{H})}$);
- ——负载电阻(R_L)(如果不是 50 Ω);
- ——滤波器最大传输频率(中心频率) (f_o) 和等效噪声带宽 $(\Delta f_N)_o$
- 2.5 带或不带尾纤的雪崩光电二极管的过剩噪声因子
 - a) 目的

测试带或不带尾纤的雪崩光电二极管的过剩噪声因子严。

b) 测试电路图

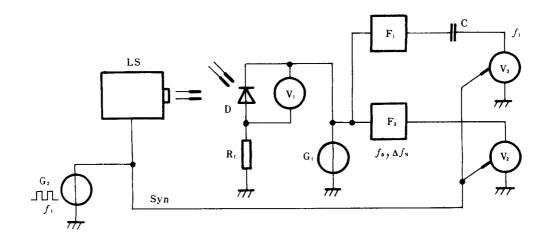


图 45

c) 电路说明和要求

LS---光源;

D--被测器件;

R_L——负载电阻;

 G_1 ——直流电压源;

 G_2 一频率为 f_1 的光调制发生器;

 V_1 ——直流电压表;

 V_2 ——方均根电压表,在频率 f_1 时带同步放大;

 V_8 ——交流电压表,在频率 f_1 时带同步放大器;

 \mathbf{F}_1 ——低通滤波器;

 $\mathbf{F_2}$ ——带通滤波器,具有规定的中心频率 $\mathbf{f_0}$ 和带宽 Δf_{N} ;

C---隔直电容;

Syn——同步信号。

- 注:① 调制频率 f_1 低于 f_0 ,由于被测器件 D 的频率响应, f_0 必须足够低以防止测量误差。
 - ② 滤波器 F₂ 应滤掉调制频率 f₁。
 - ③ 调制频率 f_1 可通过滤波器 F_1 ,但滤掉频率大于 $f_0 \Delta f_N/2$ 的部分。
 - ④ 电容 C 的值应很大,使频率 f_1 能通过。
 - ⑤ 应辐射被测器件的光学窗口,辐射应完全充满光学窗口。

d) 测试步骤

1) 通过 G_1 给被测器件施加低偏置电压 V_{R2} 。

 V_{R2} 应很低,以致几乎没有载流子倍增(即倍增因子M=1),但应使器件处于全耗尽,并能达到它的一定速率和灵敏度。调节输入光功率得到规定的光电流 I_{po} , I_{po} 与在 V_{3} 上的电压与信号调制频率 f_{1} 下测得的 V_{30} 之间的关系式如下:

$$I_{po} = \frac{I}{K} \times \frac{V_{30}}{R_{r}}$$

而 K 是调制发生器 G_2 的占空比(即方波的占空比是 50%, K=1/2)。

2) 增加偏置电压 V_R ,直至在 V_3 上读出电压 V_{31} ,其值为 $M \times V_{30}$:

$$M = \frac{V_{31}}{V_{30}}$$

3) 在 V_2 上读出 V_{21} ,从下式中计算出过剩噪声因子 $F_{e:}$

$$F_{\mathrm{e}} = rac{V_{\mathrm{21}}^{2}}{2q imes I_{\mathrm{po}} imes M^{2} imes R_{\mathrm{L}}^{2} imes \Delta f_{\mathrm{N}}}$$

式中q是电子电荷。

e) 注意事项

当器件完全耗尽并达到额定的速率和灵敏度时,对于增益不能达到 1(M=1) 的器件,这种方法不十分精确。

- f) 规定条件
- ——环境或管壳温度**;**
- ——倍增因子(M);
- ——光电流(I_∞);
- ——峰值发射波长(λ₀)和光谱辐射带宽(Δλ);
- ——反向电压(V_{R1})。
- 2.6 带或不带尾纤的光电二极管的小信号截止频率
 - a) 目的

在规定条件下测试带或不带尾纤光电二极管的小信号截止频率 f_{co}

b) 测试电路图

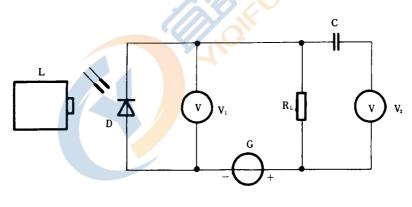
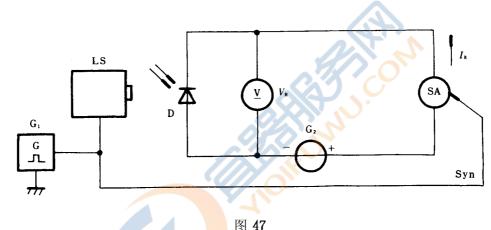


图 46

- c) 电路说明和要求
- D---被测器件;
- L——频率可调的小信号正弦调幅窄带发射光源;
- G---直流电压源;
- V₁——直流电压表;
- V₂——宽频带电压表;
- R_L——负载电阻,低于被测器件的电源内阻;
- C---耦合电容。
- d) 注意事项

光源应全部照射器件的光学窗口。

e) 测试步骤


给被测器件施加规定的直流反向偏压,调节(辐射)光源,使器件在光学窗口上获得规定的 ϕ_e 平均值。用低频调制(小于 $f_c/100$)光源,在 V_2 上测量出交流输出信号。

增加光源的调制频率,并使 Φ 。保持平均值和调制电平不变,直到 V_2 测量出的输出信号减小到 $1/\sqrt{2}$ 时,这个频率就是小信号截止频率 f_{c} 。

- f) 规定条件
- ——环境或管壳温度**;**
- ——反向电压(V_R);
- ----负载电阻(R_L);
- ——光源的峰值发射波长 (λ_{\bullet}) 和光谱辐射带宽 $(\Delta\lambda)$;
- ——辐射功率(ϕ_{ϵ})。
- 2.7 带或不带尾纤的雪崩光电二极管倍增因子
 - a) 目的

测量带或不带尾纤的雪崩光电二极管(APD)的倍增因子 M。

b) 测试电路图

c) 电路说明和要求

LS——辐射源或光源:

D---被测器件;

 G_1 ——调制发生器;

G₂——直流电压源;

SA——同步电流表;

Syn——同步信号。

d) 注意事项

应考虑被测器件的光学窗口。

e) 测试步骤

通过电压源 G_2 给被测器件施加规定的低偏置电压 V_{R2} ,调节辐射功率 Φ_e 到规定值,在同步电流表上测量出电流 I_{R2} 。

改变被测器件上的直流偏置电压到规定的 V_{R1} ,在同步电流表上测量出电流 I_{R1} ,用下式计算倍增因子M。

$$M = \frac{I_{R1}}{I_{R2}}$$

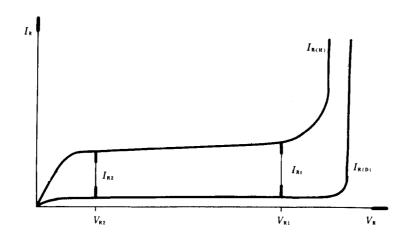


图 48 $I_{R(D)}$ —暗电流; $I_{R(H)}$ —光辐射下的电流

- f) 规定条件
- ——环境或管壳温度**;**
- ——反向电压(V_{R1} , V_{R2});
- ——辐射功率(Φ_e);
- ——峰值发射波长 (λ_0) ;
- ——光谱辐射带宽(Δλ);
- 一一光学窗口;
- ——光学结构。
- 2.8 带或不带尾纤的 PIN 光电二极管或雪崩光电二极管 (APD)的开关时间
 - a) 目的

测量带或不带尾纤的 PIN 光电二极管或雪崩光电二极管(APD)开通时间 t_{cm} (开通延迟时间 $t_{d(cm)}$ +上升时间 t_r)和关断时间 t_{off} (关断延迟时间 $t_{d(off)}$ +下降时间 t_r)。

b) 测试电路图

用图 49 测量 PIN 光电二极管或雪崩光电二极管(APD)的开关参数。

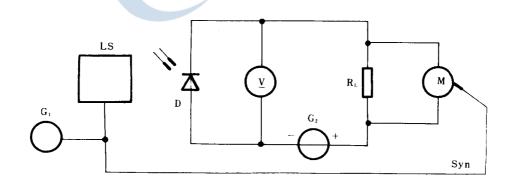


图 49

c) 电路说明和要求

 G_1 ——调制发生器;

 G_2 ——直流电压源;

LS——辐射源:

D---被测器件;

R_L——负载电阻;

M——测量仪器;

Syn——同步信号。

- d) 注意事项
- ——输入辐射功率脉冲的上升、下降时间应很短,不能影响测试精度;
- ——应考虑被测器件的光学窗口**,**
- ——应测量进入被测器件光学窗口的全部光辐射。
- e) 测试步骤

通过电压源 G_2 给被测器件施加规定电压,调节辐射功率到规定的峰值辐射功率(ϕ_{e1})和补偿辐射功率(ϕ_{e2})。

用测量仪器 M 测量开关时间。

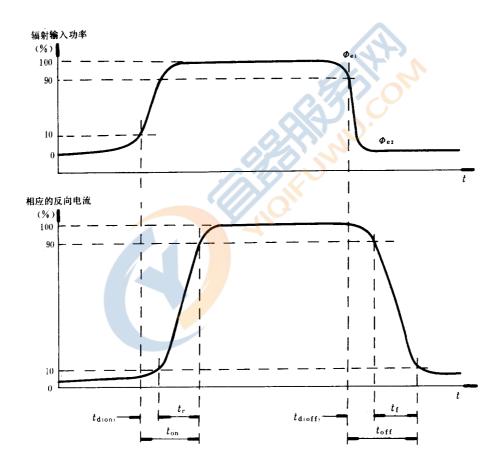


图 50

 $L_{d(on)}$ — 开通延迟时间; L_{on} — 开通时间; L_{i} — 上升时间; L_{off} — 关断时间; $L_{d(off)}$ — 关断延迟时间; Φ_{e1} — 峰值辐射输入功率; L_{i} — 下降时间; Φ_{e2} — 补偿辐射输入功率

- f) 规定条件
- ——环境或管壳温度**;**
- ——反向电压 (V_R) ;
- ——峰值辐射功率(**Φ**_{el});

- ——补偿辐射功率(Φ_{e2});
- ——负载电阻(R_L)(如果不是 50 Ω);
- ——峰值发射波长(λ_b);
- ——光谱辐射带宽(Δλ);
- ——光学窗口**;**
- ——光学结构。

3 光耦合器测试方法

3.1 电流传输比(h_{F(ctr)})

a) 目的

在规定条件下,测试光耦合器正向电流传输比的静态值

b) 测试电路图

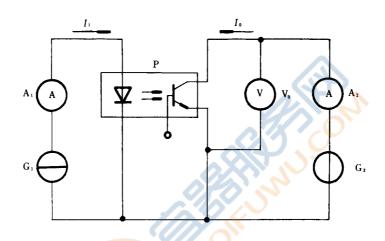


图 51 基本电路

P一被测的光耦合器

c) 电路说明和要求

 I_i 一输入电流-发射二极管的正向电流 $I_{\mathbf{F}}$;

 I_{o} 一输出电流-光电二极管的反向电流 I_{R} 或光电晶体管集电极电流 I_{C} ;

 $V_{\rm o}$ — 输出电压-光电二极管的反向电压 $V_{\rm R}$ 或光电晶体管集电极-发射极电压 $V_{\rm CR}$;

 A_1,A_2 ——电流表;

G₁——电流源;

G₂—电压源。

d) 测试步骤

除非另有规定,测试应在标准大气条件下进行。

调节恒流源 G1, 使流过发射二极管的电流为规定的输入电流。

调节电压源 G_2 ,使 V_R 或 V_{CR} 为规定值。用电流表 A_2 测试输出电流 I_R 或 I_{Co}

电流传输比由下式计算:

因此,对于带二极管输出的光耦合器

$$h_{\mathbf{F}(\mathsf{ctr})} = I_{\mathbf{R}}/I_{\mathbf{F}} \qquad \qquad \cdots \qquad (2)$$

而对于带晶体管输出的光耦合器

$$h_{\mathbf{F}(\mathsf{ctr})} = I_{\mathbf{C}}/I_{\mathbf{F}} \qquad \cdots \qquad (3)$$

e) 注意事项

如果光耦合器对外来辐射敏感的话,应规定并遵守测试中所采取的预防措施。

- f) 规定条件
- ──环境温度:
- ---输入或输出电流,直流或脉冲;
- ——输出电压(V_R 或 V_{CE});
- ——(适用时)大气条件。
- 3.2 输入-输出电容(C_{IO})
 - a) 目的

在规定条件下,测试光耦合器的输入端与输出端之间的电容。

b) 测试电路图

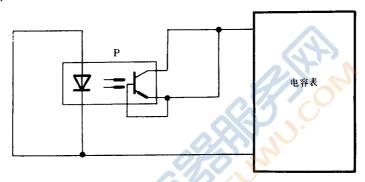


图 52 基本电路 P—被测的光耦合器

c) 测试步骤

将光发射器件的各端及光探测器件的各<mark>端</mark>分别连接在一起。用合适的电容表在1 MHz 频率(除非另有规定)测试光发射器件与光探测器件端子之间的电容。

d) 注意事项

应考虑到测试夹具和引线的寄生电容所引起的误差。

- e) 规定条件
- ---环境温度;
- ——测量频率,如果不是 $1\,\mathrm{MHz}$ 。
- **3.3** 输入和输出之间的隔离电阻(R_{TO})
 - a) 目的

在规定条件下,当给光耦合器加直流电压时,测试其输入和输出端之间的隔离电阻。

b) 测试电路图

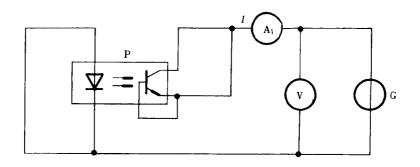


图 53 基本电路 P—被测的光电耦合器;G—电压源

c) 注意事项

应考虑到测试夹具和引线的漏电流。

d) 测试步骤

光发射器件各端和光探测器件各端分别连接在一起。在光发射器件和光探测器件之间施加规定的测试电压,时间 $60 \, \mathrm{s}$ 。按 V/I 计算出隔离电阻。

- e) 规定条件
- ---环境温度;
- ——测试电压;
- ——施加测试电压的时间,如果不是 60 s。

3.4 隔离试验

a) 目的

在规定条件下,检验器件耐隔离试验电压 $(V_{10}$ 或 $V_{10RM})$ 的能力。

b) 测试电路图

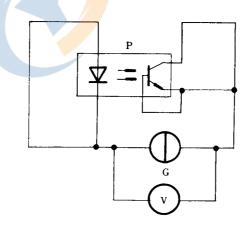


图 **54 P**—被测光耦合器**;G**—电压源

c) 试验程序

试验应按 SJ/Z 9001.1(IEC 68-1 号标准)的 5.3.1 条中的标准大气条件下进行。 把器件插入试验管座,并将光发射器件的各端和光探测器件的各端分别连在一起。 将直流或交流试验电压从零增加到规定值,如果规定值小于或等于 1 000 V,则增加速率约为 100 V/s,如果规定值大于 1 000 V,则增加速率应为 500 V/s。

对于鉴定试验,该电压应维持 1 min,对于验收试验,最少应维持 10 s。

d) 要求

试验期间,不应出现内部和外部飞弧。

被测器件应通过试验后的测试。

- e) 规定条件
- ——隔离电压(V_{IO}或 V_{IORM});
- ——试验时间(如果不是 1 min 或 10 s);
- ——试验后的测试。

3.5 光耦合器的局部放电

a) 目的

在规定条件下,用测试局部放电的强度来检验光耦合器输入和输出端之间固有的绝缘性能。这项试验是非破坏性的。

注:局部放电的定义见IEC 出版物 270 中 3.1 条,为方便起见,现复述如下。

局部放电

在此标准的术语中,局部放电指的是:只局部跨接导体之间绝缘的放电。这种放电可能在邻接的导体发生,也可能不在邻接的导体发生。

注:导体周围气体中的局部放电有时称为"电晕"。这个术语不能用于其它形式的局部放电。

"电离"这个术语不能用来表示局部放电的特殊情况。

b) 测试电路图

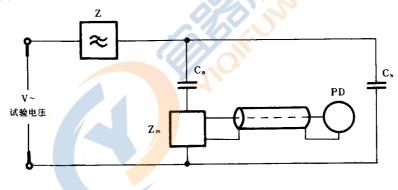


图 55 局部放电试验电路

c) 试验电路说明和要求

(同时见附录 A1 至 A3)

1) 试验电路

电路主要由以下部分构成:

C_a——被测光耦合器(可视为一个电容);

C_k——耦合电容(旁路局部放电电流);

Z_m——由测试阻抗、连线、限流器件和测试仪器等组成的测试电路;

PD---局部放电测试仪;

Z---低通滤波器(用来减小电源的干扰)。

(见附录 A1)

2) 仪器特性

测试试验电压的峰值,在试验电压的正弦波失真小于 5%的情况下,可使用 RMS 阅读器。

局部放电测试仪的带宽应小于 15 kHz。

中心频率 150 kHz~2 MHz 之间

测试电路的谐振频率至少应为所用中心频率的 3 倍(另见附录 A2)

3) 耦合电容

耦合电容应是低电感的,并在试验电压下,不出现任何局部放电。

- d) 试验步骤
- 1) 校准
- 1.1) 概述

校准包括两种。一种是对测试仪器本身的固有特性进行全面的检测,包括详细的校准。这种全面检测应在大修之后进行一次或至少每年进行一次。另一种是对整个试验电路中的仪器的常规校准,并应在每次试验前进行或者在有许多相同的试验目标进行试验的情况下,则这种常规校准可隔一段合适的时间进行一次,间隔的长短可由用户确定。后一种校准应包括证明,用于试验电路中的仪器,能测出大小为1pC(最小值)的局部放电。

1.2) 局部放电测试仪的校准

局部放电测试仪的校准按生产厂家的说明书进行。

1.3) 完整测试装置中仪器的校准

完整测试装置中仪器的校准按图 56 进行。

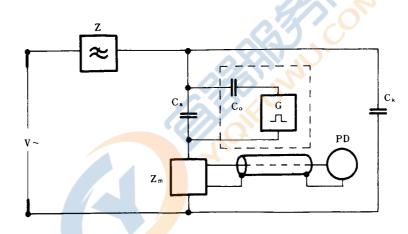


图 56 完整测试装置校准的连接图

C。一脉冲发生器电容;G一脉冲发生器(其他元件见图 55)

这种校准应每天重复进行,并且每种器件采用不同的校准方法。

调节脉冲发生器,使脉冲输出的电量为 5 pC,校准发生器的脉冲上升时间应小于 50 ns,延迟时间应在 100 μ s 和 1 000 μ s 之间。

仪器的读数至少应为满刻度的一半。

试验电路通电之前,必须撤掉脉冲发生器。

试验电压置于适合于被测器件的最高可用电压,仪器的读数应小于 1 pC,对这种试验电路噪声电平的验证来说, C_a 应无局部放电。

2) 试验方法

局部放电基本噪声电平值不能从样品的局部放电值中扣除。

局部放电量 qc 是在局部放电测量时间间隙 to 内读出的瞬态最大值。

注:5pC的局部放电量符合光耦合器的实用标准,小于这个值更好,但目前还没有看到。

2.1)方法 a)

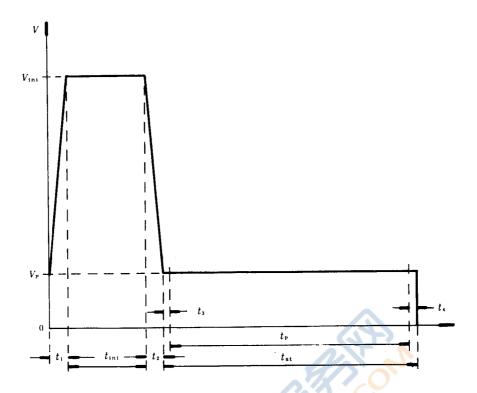


图 57 时间间隔与试验电压的关系图

对被测器件加上一个比预期初始值低得多的电压,然后逐渐提高到规定值 V_{mi} ,在这个值时,能进行局部放电。

在规定的时间 (t_{ini}) 内,试验电压保持在初始值。然后,将试验电压降至局部放电试验电压值 (V_p) 。在规定时间 (t_{st}) 内,试验电压保持在 V_p 值,这时,在给定的时间间隙 (t_p) 内,测出局部放电量。

$$V_{
m ini} = V_{
m IOSM}$$
 $V_{
m p} = k \cdot V_{
m IORM} (k > 1)$ 2. 2) 方法 b)

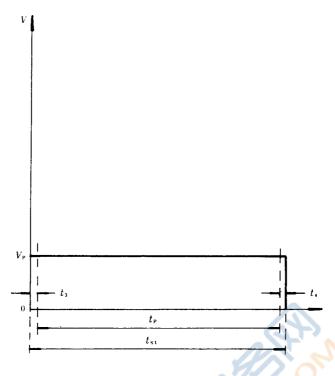


图 58 时间间隔与试验电压关系图

加上局部放电试验电压 (V_p) 。在规定时间 (t_{st}) 内保持此电压,这时在给定时间间隙 (t_p) 内测出局部放电量。

$$V_{p} = k \cdot V_{IORM}$$

e) 注意事项

在本标准中,所有适用的试验电压均为峰值电压。

f) 规定条件

参数	方法	方法
	a)	b)
初始时间 t _{ini}	X	•
初始电压 V _{IOSM}	X	•
局部放电试验电压 $V_{\mathfrak{p}}:V_{\mathfrak{p}}=k \bullet V_{IORM}$	X	X
局部放电测试时间 $t_{ m p}$	X	X
应力时间 t _{st}	X	X
设定时间 t1,t2,t3,t4	X	X
环境温度 T_{amb}	X	X

说 明

a. 被测器件的局部放电,引起试验电路中电荷的转移,产生通过测量阻抗的电流脉冲,此测量阻抗与被测器件和耦合电容一起,决定测得电压脉冲的周期和形状。将这些脉冲进一步整形和放大,以便给测量仪器提供一个与视在电荷量成正比的值。

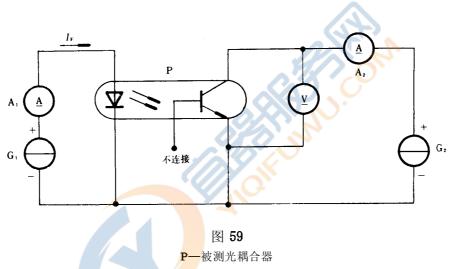
b. 测试阻抗

测试阻抗通常作为一个四端网络,选定一个频率响应来避免试验电源频率影响测量仪器。在电阻性

阻抗的情况下,这可通过将电感和电阻并联或将电容串联在测量电阻与仪器连线之间的方法来实现。测量阻抗可由1个电阻、1个与电容并联的电阻,1个调谐好的电路或较复杂的滤波器组成。

\mathbf{c} . 测量视在电荷 q 的仪器

由局部放电引起的电流脉冲,在测试阻抗的终端产生一个信号,对短期电流脉冲而言,产生的信号是一个电压脉冲,其峰值和被测光电耦合器的视在电荷成正比。(见 IEC 出版物 270 号 3. 2. 2 条)


单个脉冲将在阴极射线示波器上显示出来,视在电荷的大小可通过校准确定。脉冲将在触发的线性时基上显示出来。例如,以放电脉冲或试验电压的形式显示。

波形图有助于看出不同种局部放电之间和待测放电与外来干扰之间的明显差别。实际试验期间测得的视在电荷的大小通常被理解为与最大的重复出现脉冲有关。

- **3.6** 光耦合器的集电极-发射极饱和电压 $V_{CE(sat)}$
- 3.6.1 集电极-发射极饱和电压(直流法)
 - a) 目的

在规定条件下,测试光电晶体管的集电极-发射极饱和电压。

b) 测试电路图

c) 注意事项

由于有超过最大功耗 P_{\max} 的危险, 必须严格按测试步骤进行。如果需要, 可以改进电路, 例如, 对电源 G_2 接一个限制电压的电路。

d) 测试步骤

温度在规定值

正向电流调至规定值,在电流表 A_1 上读出。集电极电流调至规定值,在电流表 A_2 上读出。测试集电极-发射极饱和电压,在电压表 V 上读出。

e) 规定条件

环境、管壳或基准点温度(T_{amb});

正向电流 (I_F) ;

集电极电流 (I_c) 。

- 3.6.2 集电极-发射极饱和电压(脉冲法)
 - a) 目的

在脉冲条件下,测试光电晶体管集电极-发射极的饱和电压。

b) 测试电路图

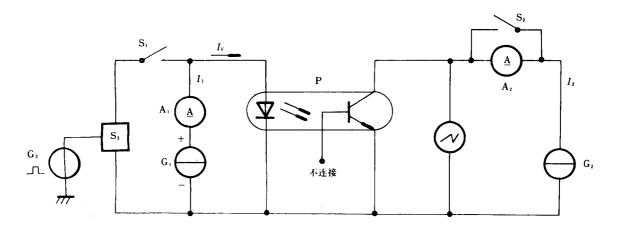


图 60

P-被测光耦合器

c) 电路说明和要求

电子开关 S_3 只有脉冲发生器 G_3 输出脉冲时,才接通;恒流源 G_1 的内阻远远大于被测光耦合器的输入阻抗;恒流源 G_2 的内阻远远大于 $V_{CR(Sat)}/I_C$ 的值。

d) 注意事项

随负载而变的直流源的响应时间应低于所测光电晶体管的"开启"时间; 脉冲发生器的脉宽和占空比应足够小,使被测光电晶体管没有显著的热耗散产生; 直流源 G₂ 的最大电压,不能超过晶体管的集电极-发射极击穿电压。

e) 测试步骤

温度置于规定值

 S_1 断开,被测光耦合器暂不插入测试插座,并把短路插头置于阳极和阴极插孔,调节电流源 G_1 ,直到电流表 A_1 读数为规定值 I_{F_0}

 S_2 断开,光耦合器暂不插入测试插座,并把短路插头置于发射极和集电集插孔,调节电流源 G_2 ,直到电流表 A_2 读数为规定值 I_{Co}

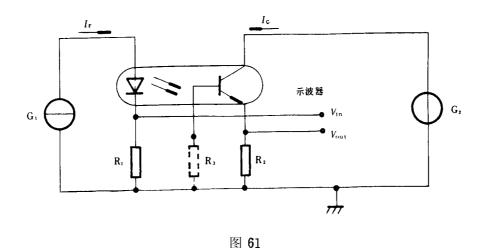
被测光耦合器插入测试插座, S_1 , S_2 闭合, S_2 由 G_3 控制,在示波器上观察到"开启"时波形的平坦部分稳定值,即为 $V_{\text{CE(sat)}}$ 。

f) 规定条件

环境、管壳、基准点温度(Tamb、Tcase、Tref);

输入正向电流 $(I_{\mathbf{P}})$;

集电极电流 (I_c) ;


脉冲宽度、占空比($t_{\rm w}$ 、 δ)推荐值: $t_{\rm w}$ =300 $\mu {\rm s}$, $\delta \leqslant 2\%$ 。

3.7 光耦合器的开关时间

a) 目的

在规定条件下,测试光耦合器开通和关断时间。

b) 测试电路图

c) 电路说明和要求

 G_1 一脉冲发生器;

 G_2 —电源电压 (V_{∞}) 。

d) 注意事项

正在考虑中。

e) 测试步骤

测试时,电压源 V_{∞} 加在被测器件的输出电路, G_1 产生的脉冲加在器件的输入端,增加脉冲幅度,直到获得规定的输入电流 $I_{\mathbb{R}}$ 或输出电流 $I_{\mathbb{C}}$ 。

开关时间由示波器上观察到的波形确定(见图 62)。

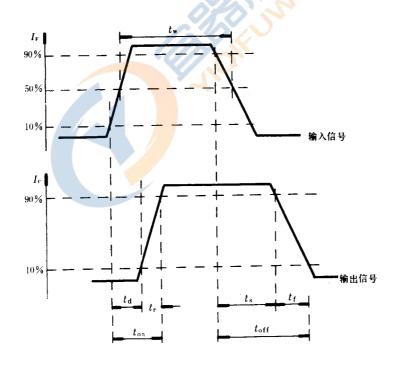


图 62

 $l_{d(on)}$ —开通延迟时间; $l_{d(off)}$ —关断延迟时间; l_{r} —上升时间; l_{e} —下降时间; $l_{on}-l_{d(on)}+l_{r}$ —开通时间; $l_{off}-l_{d(off)}+l_{t}$ —关断时间

f) 规定条件 环境温度; 输入或输出电流(适用时);

电源电压;

脉冲宽度 t_w 和占空比 δ (适用时);

 R_1 —50 Ω (除非另有规定);

 R_2 —100 Ω(除非另有规定);

R₃ 值(若使用)。

附加说明:

本标准由中华人民共和国电子工业部提出。

本标准由电子部标准化所归口。

本标准由电子工业部第四十四所负责起草。

本标准主要起草人王雨苏、李春芳。

自本标准实施之日起,原中华人民共和国电子行业标准 SJ/Z 9014.2《半导体器件 分立器件和集成电路第5部分;光电子器件》废止。