第一	章	概	述1
	1.1	技	术参数1
	1.2	主	要功能1
	1.3	技	术指标2
第二	章	使用	1前的准备4
第三	章	面板	〔示意图5
	3.1	前	「面板示意图5
	3.2	厏	面板示意图6
第四	章	操作	Ξ说明9
	4.1	测]量显示界面9
	4.2	图]显示界面12
	4.3	柱	张图显示界面14
	4.4	通	道设置界面15
	4.5	设	2置文件界面18
	4.6	系	统设置界面19
	4.7	F	21. 位机软件
第五	章	命令	>参考27
	5.1	简	介
	5.2	符	号约定和定义27
	5.3	命	令结构27
	5.4	命	令缩写规则
	5.5	命	令题头和参数
	5.6	命	令参考
附住	牛:	•••••	

版本历史:

本说明书不断完善以利于使用。

由于说明书可能存在错误或遗漏,仪器功能的改进和完善,技术的更新及软件的升级, 说明书将做相应的调整和修改。

请关注您使用软件的版本及说明书的版本。(Ver 1.0/2023.03)

△ 警告:

不要在有腐蚀气体、多灰尘的环境下,放置 或使用本仪器!!!

确保该仪器连接到电气地(安全地,大地)!!!

若不接地,易造成仪器性能紊乱,输出出错!!!

第一章 概 述

V系列多路温度测试仪是一款 7 寸大屏幕彩色液晶显示可触屏控操作,具有高性能 32 位 ARM 处理器,可以同时观看到多通道的温度变化,十分适于温度、湿度、电压、电流、 压力等采集、 记录,分析、查看等应用。本系列仪器显示界面丰富,操作简便易上手,采 样运算效率高,测试稳定可靠,并带有报警功能。

仪器根据客户需求有 8 路~64 路可选,最大可扩展至 128 路,提供计算机上位机软件, 上位机可实时采集测量数据,做进一步分析,同时也可以通过外置 U 盘或 TF 卡实时存储采 样数据。对接入的温度探头本身自有误差,用户可以单独对每个通道做数据补偿,从而改善 温度探头的测量精度。

1.1 技术参数

1.1.1 主要规格

传感器类型(分度号):	热电偶 K,J,T,E,S,N,R,B
	热电阻 PT100, CU50
	直流电压,直流电流。
测试范围:	-200.0℃~1800.0℃(根据不同的热电偶型号改变)
分辨率:	0.01℃ (普通测量显示界面)
通道数:	8~64路(根据客户需求选择合适通道数,可扩展至128路)
测试速度:	1次/秒,2次/秒,1次/10秒,1次/1分钟,1次/10分钟
显示:	采用带触摸功能的 7.0 英寸高清彩色液晶屏

1.2 主要功能

1.2.1 系统设置

- ◆ 报警功能设置
- ✤ 温度单位设置
- ◆ 采样速率设置
- ◆ 通讯波特率设置
- ◆ 中、英文切换
- ◆ 日期和时间设置

1.2.2 分选设置

用户可对独立通道分选进行数据设置,可对每一路温度数据进行上限和下限设置,仪器 会对采样数据进行实时判断。

第1页

1.2.3 通道设置

- ◆ 对通道是否使用可以单独打开或关闭
- ✤ 对独立通道配置传感器类型

✤ 对独立通道选择单位

◆ 对独立通道分选进行数据设置,可对每一路温度数据进行上限和下限设置,仪器 会对采样数据进行实时判断。

◆ 系数补偿,对接入的温度探头本身自有误差,允许用户对每一路的数据进行校正, 或根据不同变送器类型传感器的参数系数(K、B值),进行数据转换,同时设置相应 参数的单位,方便还原为真实测量值,方便阅读;

1.2.4 FAT 存储功能

允许用户创建【.xls】为后缀的文档,并把每一路的数据保存在 USB 存储卡或 TF 卡内 (不支持移动硬盘)。文档大小可以通过设置存储间隔来配置。

1.2.5 远程控制

支持最大 115200bps 的波特率,兼容 SCPI 协议,ASCII 传输。(建议使用 115200bps 作为通讯波特率)

1.3 技术指标

1.3.1 下列资料在以下条件下测得:

- ◆ 温度条件: 25℃±5℃
- ◆ 湿度条件: 65% R.H.
- ◆ 预热时间: >30 分钟
- ◆ 校准时间: 12 个月
- ♦ 测量环境:
 - ◆ 指标: 温度 15℃~35℃ 湿度<80%RH
 - ◆ 操作: 温度 10℃~40℃ 湿度 10~90%RH
 - ◆ 存储: 温度 0℃~50℃ 湿度: 10~90%RH
 - ◆ 湿度: 10~90%RH

◆ 热电偶型号: T, K, J, N, E, S, R, B

热电阻型号: PT100,CU50

- 直流电压范围: 0-10V
- 直流电流范围: 0-20mA
- ◆ 显示位数: 主参数 5 位
- ◆ 测试速度: 1次/秒,2次/秒,1次/10秒,1次/1分钟,1次/10分钟
- ◆ 最大读数: 9999.9
- ◆ 最小读数: -999.9
- ◆ 数据记录: USB 存储器, TF 卡存储器
- ◆ 讯响: 开/关

- ◆ 通讯: USB-232C
- ◆ 编程语言: SCPI

仪器精度不包含标准接点补偿精度。

输入类型	型号	测试温度范围(℃)	测量精度(℃)
	于 刑执由佣	-150℃到0℃	±1.0°C
		0 ℃到400℃	±0.8℃
	✓ 刑払由佣	-100℃到0℃	±1.2℃
		0℃到1350℃	±0.8℃
	」刑执由伊	-100℃到0℃	±1.0°C
	J 至然电内	0 ℃到 1200℃	±0.7℃
	▶ 刑执由俚	-100℃到0℃	±1.5℃
		0℃到1300℃	±0.9℃
	■ 刑执由俚	-100℃到0℃	±0.9℃
热电偶		0℃到850℃	±0.7℃
		0℃到100℃	±4.5℃
	S 型热电偶	100℃到300℃	±3.0℃
		300℃到1750℃	±2.2℃
		0℃到100℃	±4.5℃
	R 型热电偶	100℃到 300℃	±3.0℃
		300℃到1750℃	±2.2℃
		600℃到800℃	±5.5℃
	B 型热电偶	800℃到1000℃	±3.8℃
		1000℃到1800℃	±2.5℃
执由阳	PT100	-200 到 600℃	±0.5°C
然电阻	CU50	-50℃ 到 150℃	±0.5℃
	0-10V	-0.5V 至+11.000V	0.1%±2 个字
古法中口	0-5V	-0.5V 至+5.500V	0.1%±2个字
上	±20mV	-21mV 至+21mV	0.05%土2 个字
	±100mV	-110.0m 至+110.0mV	0.05%±2 个字
直流电流	0-20mA	0mA 至+21.00mA	0.1%±2 个字

接点补偿在热电偶测量精度上加±0.5℃。

热电偶传感器的测量精度请以传感器制造商的标准为主。

第二章 使用前的准备

- ▶ 小心打开仪器的运输包装箱,搬动时需小心,防止坠落伤人。
- 应将仪器水平放置在坚实牢固的座架上,仪器下方与桌面间不能有高于机脚的物品,以 防外力伤及对仪器内部电路造成损坏。
- 本仪器没有特殊的防水、防潮设计,为了使仪器能长时间安全正常地工作,不能将它置 于潮湿环境下储存或工作。
- ▶ 准备一个带接地线的 100V~240V 单相交流电插座,插座的电流负载能力不小于 10A。
- 用粗导线(电流容量不小于 20A)将仪器背板上的保护地与工作间的保护地线可靠连接。用配置的电源线将仪器与电源插座接好。
- > 仪器特别是连接被测件的测试导线应远离强电磁场,以免对测量产生干扰。
- 请不要在多尘、多震动、日光直射、有腐蚀气体下使用。不要在有腐蚀气体象硫酸、雾 或者类似的东西的环境中使用仪器。这可能会腐蚀导线、连接器,形成隐患或者连接缺 陷,会导致故障、失效甚至是火灾。
- 通过仪器面板上的电源开关接通仪器电源,液晶显示器亮起后先显示开机界面以及自检 过程,再进入测试主界面,此时需预热机器 5~10 分钟后,再进行测量。
- > 将仪器从一个环境温度移至另外一个环境温度时,由于仪器表面和实际环境有温差,导 致仪器冷端采样有偏差,先静置 30 分钟后,再开机预热,进行测量。
- ▶ 请勿频繁开关仪器,以免引起内部数据混乱。

第三章 面板示意图

3.1 前面板示意图

图 3.1.1 前面板示意图

3.1.1 电源开关

电源轻触开关,轻触此按键更改一次开机状态。仪器插上电源线通电时,自动恢复上次的开机状态;

仪器正常开机时,液晶显示屏进入开机界面,轻触开关显示蓝灯;

轻触此开关关机,液晶显示屏暗,轻触开关显示红灯;

关闭仪器后,切断输入电源,轻触开关呈灰色不亮灯。

注意:为了确保仪器的稳定工作,仪器在关机后需要等待 30 秒钟才允许再次开机。

3.1.2 标贴型号

仪器的出厂型号以及仪器名称。

3.1.3 液晶显示屏

带触摸屏的,7寸彩色液晶显示屏。

3.1.4 SD 卡

SD 卡卡槽,用于存储、读取测试结果。

3.1.5 USB 接口

通过 U 盘,存储、读取测试结果。

3.1.6 测试结果指示灯

测试结果指示灯,所有通道都测试合格时,PASS 绿灯亮;有通道测试不合格时,FAIL 红灯亮。

3.1.7 光标控制键以及确认键

光标控制键用于在 LCD 显示页面的域与域之间移动,当光标移动到某个域,该域在液晶显示器上为反橙色显示。更新修改值时,按中间确认键完成修改。

3.1.8 测量快捷键

按此快捷键,可直接进入测量界面。

3.1.9 系统设置快捷键

按此快捷键,可直接进入系统设置界面。

3.1.10 通道设置快捷键

按此快捷键,可直接进入通道设置界面。

3.1.11 启动/停止快捷键

按此快捷键,可启动测试或停止测试。

3.2 后面板示意图

下图 3.2.1 以 V 系列-64 路的后面板示意图为例进行说明;

图 3.2.2 V 系列-64 热电偶接口通道示意图

如上图 3.2.2 所示, CH01~CH64 的接口位置, 一组通道板有 8 路接口;

下图 3.2.3 以一组通道板为例,从左到右依次为通道 1~通道 8,每个通道都有三个接线端口,从左往右为 ABC。

图 3.2.3 一组通道板热电偶接口示意图

每一路的接线方式,根据测试的方式,接线方式也不一样,具体接线方式如下图 3.2.4 所示。

图 3.2.4 接线方式示意图

- ◆ 1~8 代表八个通道, A、B、C 代表一个通道的三个接线端子;
- ◆ 热电偶信号输入: A 脚接信号输入正, B 脚接信号输入负;
- ◆ 电流信号输入: A 脚接信号输入正, B 脚接信号输入负;
- ◆ 电压信号(1V以上)输入: B 脚接信号输入正, A 脚接信号输入负;
- ◆ 电阻信号输入 : 三线制 PT 铂电阻探头, B 与 C 接同色线, A 脚单独接;
- ✤ 开关量信号输入: A 脚接信号输入正, B 脚接信号输入负。
- ◆ 继电器输出接+-脚为常开接口,-G 脚为常闭输出接口。

3.2.2 USB 通讯接口

通过数据线连接电脑,实现与电脑的通讯。

3.2.3 选件接口

选配接口,不可短路。

3.2.4 电源插座

用于连接电源线,输入交流电压。

第四章 操作说明

4.1 测量显示界面

开机主界面就是测量显示界面,在任意界面按面板快捷键【测量】键可直接进入测量显示 8 通道界面(如下图 4.1.1 所示)。

〈 测量显示 〉				8 CH
01 K M1 °C	02 K M1 °C	03 K M1 °C	04 K M1 °C	<u> </u>
26.65	26.11	26.77	27.12	曲线图
H: 26.7 L: 26.4	H: 26.3 L: 26.0	H: 26.9 L: 26.7	H: 27.1 L: 27.0	柱状图
A: 26.6 05 K M1 °C	A: 26.2	A: 26.8	A: 27.1	通道设置
26.25	26.35	26.10	26.44	设置文件
H: 26.3 L: 26.1	H: 26.4 L: 26.0	H: 26.1 L: 25.9	H: 26.4 L: 26.2	系统设置
A: 26.2 U盘己接入。 14:07:24	A: 26.1	A: 25.9	A: 26.3 :一页 下一页	启动

图 4.1.1 测量显示主界面(8_CH 显示界面)

〈 测量显示 〉	00 1/ 101 00	00 1/ 101 00		16_CH
26 65	26 11	26 77	04 K M1 C	130 44 曲
20.00	20.11	20.11		田线图
26 25	⁰⁶ K M1 ⁻ C	07 K M1 °C	08 K M1 C 26 44	柱状图
09 K M2 °C	10 K M2 °C	11 K M2 °C	12 K M2 °C	通道设置
27.80	27.31	27.58	27.51	设置文件
13 K M2 °C	14 K M2 °C	15 K M2 °C	16 K M2 °C	系统设置
27.18	27.47	27.63	27.60	
U盘已接入。 14:08:22		上	二一页 下一页	(启动)

图 4.1.2 16_CH 显示界面

(< 初	量显示 >								32. CH
01 K	26.65	°C 02 M1 K	26.11	°C 03 M1 K	26.77	°C 04 M1 K	27.12	°C M1	01_011
05 K	26.25	°C 06 M1 K	26.35	°C 07 M1 K	26.10	°C 08 M1 K	26.44	°C M1	曲线图
09 <mark>K</mark>	27.80	°C 10 M2 K	27.31	°C 11 M2 K	27.58	°C 12 M2 K	27.51	°C M2	柱状图
13 K	27.18	°C 14 M2 K	27.47	°C 15 M2 K	27.63	°C 16 M2 K	27.60	°C M2	
17 K	27.60	°C 18 M3 K	27.76	°C 19 M3 K	27.57	°C 20 M3 K	27.42	°C M3	通道设置
21 K	27.62	°C 22 M3 K	27.60	°C 23 M3 K	27.55	°C 24 M3 K	27.47	°C M3	设置文件
25 K	26.85	°C 26 M4 K	27.46	°C 27 M4 K	27.34	°C 28 M4 K	26.48	°C M4	系统设置
29 K	26.43	°C 30 M4 K	27.31	°C 31 M4 K	26.40	°C 32 M4 K	26.68	°C M4	
U盘已 14:08	已接入。 3:55					上一页	: 下一	页	启动

图 4.1.3 32_CH 显示界面

< 测量显示 >		64 CH
01 K 26.65 °C 02 K 26.11 °C 03 K 26.77 °C	04 K 27.12 °c	04_0II
05 K 26.25 °C 06 K 26.35 °C 07 K 26.10 °C	08 K 26.44 °c	
09 K 27.80 °C 10 K 27.31 °C 11 K 27.58 °C	12 K 27.51 °c	曲线图
13 K 27.18 °C 14 K 27.47 °C 15 K 27.63 °C	16 K 27.60 °C	
17 K 27.60 °C 18 K 27.76 °C 19 K 27.57 °C	20 K 27.42 °c	
21 K 27.62 °C 22 K 27.60 °C 23 K 27.55 °C	24 K 27.47 °c	柱状图
25 K 26.85 °C 26 K 27.46 °C 27 K 27.34 °C	28 K 26.48 °C	
29 K 26.43 °C 30 K 27.31 °C 31 K 26.40 °C	32 K 26.68 °C	
33 K 27.30 °C 34 K 27.27 °C 35 K 27.17 °C	36 K 26.81 °C	通道设置
37 K 27.46 °C 38 K 27.70 °C 39 K 27.23 °C	40 K 27.14 °c	
41 K 26.66 °C 42 K 26.76 °C 43 K 27.24 °C	44 K 27.48 °c	い 思 ナ 伊
45 K 27.26 °C 46 K 27.56 °C 47 K 27.31 °C	48 K 26.74 °c	以直 义件
49 K 26.37 °C 50 K 26.47 °C 51 K 26.18 °C	52 K 26.26 °C	
53 K 27.01 °C 54 K 26.22 °C 55 K 26.31 °C	56 K 26.24 °c	氢编设署
57 K 26.51 °C 58 K 26.71 °C 59 K 26.18 °C	60 K 26.20 °C	小儿以旦
61 K 26.07 °C 62 K 26.05 °C 63 K 27.06 °C	64 K 25.91 °c	
U盘已接入。	:一页 下一页	(启动)

图 4.1.4 64_CH 显示界面

现以 V 系列-64 路为例介绍该界面的各个显示参数以及功能按键。多次按面板快捷键【测量】键时,测量显示界面会在 8_CH 界面、16_CH 界面、32_CH 界面以及 64_CH 界面之间,循环切换。

按键说明:

◆ 8_CH: 按此键,显示界面会在 8_CH 界面、16_CH 界面、32_CH 界面以及 64_CH 界面之
 间循环切换;

- ◆ **曲线图**:按此键,直接进入曲线图显示界面;
- ◆ 柱状图:按此键,直接进入柱状图显示界面;
- ◆ 通道设置:按此键,直接进入通道参数设置界面;
- ♦ 设置文件:按此键,直接进入文件设置、存储、读取界面;
- ◆ 系统设置:按此键,直接进入系统文件设置界面;
- ◆ 上一页、下一页: 以当前 8 通道显示为例,按此功能键可显示上一组 8 通道或者下一组
 8 通道的实时测试结果; 16 通道显示时,按此功能键可显示上一组 16 通道或者下一组
 16 通道的实时测试结果; 以此类推;
- ◆ 启动/停止:在参数设置完成后,按启动键开始测试,此时屏幕右下角显示"启动采样"; 开始测试后,所有参数设置均无法进行修改,此时按任意键屏幕右下角显示"请停止采
 样,再设置";若需修改参数,请按下主界面的停止键,停止当前测试,屏幕右下角显示"已停止采样";完成修改后回到主界面再按启动键,重新开启测试;

显示参数说明:

图 4.1.5 通道显示图例

(1) 显示通道编号;

(2) 实测显示值;实测温度超过上限时,面板 FAIL 灯亮,测试结果显示红字;实测温度低于下限时,面板 FAIL 灯亮,测试结果显示绿字;

- (3) 热电偶型号、电压电流测试方式显示;
- (4) 采样板编号显示;
- (5) 测量单位显示,单击此处跳出弹窗,可更改显示单位;
- (6) 实测最大值显示;
- (7) 实测最小值显示;
- (8) 实测平均值显示;
- (9) 当前通道实测柱状图显示;

4.2 图显示界面

在主界面轻触屏幕上的【曲线图】按键,直接进入曲线图显示界面(如下图 4.2.1 所示); 该界面用曲线图的方式,实时显示了 8 路通道的温度变化;

图 4.2.1 曲线图显示界面

参数说明:

- ♦ X轴:测试时间;
- ♦ Y 轴:测试温度;
- ◆ 01~08:显示通道编号,编号的颜色与曲线图的颜色相对应;每个通道编号下方显示的
 是当前通道的实测温度值;

图 4.2.2 通道编号显示示意图

功能按键说明:

图 4.2.3 Y 轴功能按键示意图

Y-放大、Y-缩小、Y-上移、Y-下移:通过点击界面下侧的这四个功能按键,可调整曲线
 图 Y 轴的显示比例;

◆ 更多 1/3:按此功能键进入 X 轴的功能按键界面;

图 4.2.4 X 轴功能按键示意图

- ◆ X-放大、X-缩小、X-右移、X-左移:通过点击界面下侧的这四个功能按键,可调整曲线
 图 x 轴的显示比例;在开始新一轮之前,可通过右移、左移键回看之前的测试曲线;
- ◆ **更多 2/3:**按此功能键进入下一层的功能按键界面;

图 4.2.5 底层功能按键示意图

- ◆ 上一页、下一页:通过点击界面下侧的这两个功能按键,切换8组通道的曲线显示图;
 以当前8通道显示为例,按此功能键可显示上一组8通道或者下一组8通道的实时曲线图;
- ◆ 坐标复位:按此功能键时,曲线图 X 轴、Y 轴的坐标复位至初始化状态,采样数据保持 不变;
- ◆ **更多 3/3:**按此功能键回到 Y 轴功能按键界面;

4.3 柱状图显示界面

在主界面轻触屏幕上的【柱状图】按键,直接进入柱状图显示界面 (如下图 4.3.1 所示);

图 4.3.1 柱状图显示界面示意图

此界面实时显示了每个通道,所占设置的上下限的比例柱状图,每页显示 16 个通道; X 轴为通道编号,每个柱状图上方显示实测温度值和比例值。

比例值的计算公式为:比例值 = <u>实测值 - 下限值</u> 上限值 - 下限值

- ◆ 上一页、下一页:通过点击界面下侧的这两个功能按键,切换 16 组通道的柱状显示图;
 以当前 16 通道显示为例,按此功能键可显示上一组 16 通道或者下一组 16 通道的实时 曲线图;
- 注: 每个通道的上限值、下限值, 都在通道设置界面进行设置。

4.4 通道设置界面

〈通	道设置	>							8 CH
通道	选通	传感器	单位	实时值	下限	上限	 ₩	尝值 B	
01	\checkmark	V	V	0.0	-200.0	1800.0	1.0000	0.00	曲线图
02	\checkmark	V	V	0.0	-200.0	1800.0	1.0000	0.00	H>-hr Ma
03	\checkmark	V	V	0.0	-200.0	1800.0	1.0000	0.00	住化图
04	\checkmark	V.	V	0.0	-200.0	1800,0	1.0000	0.00	通道设置
05	\checkmark	V	V	0.0	-200.0	1800.0	1.0000	0.00	
06	\checkmark	V	V	0.0	-200.0	1800.0	1.0000	0.00	设置文件
07	\checkmark	V	v	0.0	-200.0	1800.0	1.0000	0.00	系统设置
08	\checkmark	V .	V	0.0	-200.0	1800.0	1.0000	0.00	
15:49:	55						上一页	下一页	

在主界面轻触屏幕上的【通道设置】按键,直接进入通道设置界面(如下图 4.4.1 所示); 该界面可设置所有通道的开关、传感器型号、上下限值以及补偿值;

图 4.4.1 通道设置界面示意图

在任意界面,直接按面板快捷键【设置】键时,可直接进入通道设置界面;多次按【设置】键时,显示界面会在通道设置界面、设置文件界面之间,循环切换。

参数说明:

- ♦ 通道号:通道编号;
- ◆ 选通:打开或者关闭该通道的显示功能;
- ◆ 传感器:选择轻触此按键,弹出对话框(图 4.4.2 所示),选择对应通道的传感器型号;

图 4.4.2 传感器型号选择对话框

◆ **单位:**选择轻触此按键,弹出对话框(图 4.4.3 所示),选择对应通道的显示单位;

图 4.4.3 显示单位选择对话框

- ◆ **实时值:**对应通道的实测温度显示值;
- ◆ 下限:轻触此按键,弹出数字键盘(图 4.4.4 所示),输入该通道的下限值,按 ENT 确认;
- ◆ 上限:轻触此按键,弹出数字键盘(图 4.4.4 所示),输入该通道的上限值,按 ENT 确认;
- ◆ 补偿值:轻触此按键,弹出数字键盘(图 4.4.4 所示),输入该通道的补偿值,按 ENT 确认;

图 4.4.4 数字键盘示意图

补偿值说明:

例如: 接入输出范围为 0-10V 代表 0-100%RH 的湿度变送器,即 1V 代表 10%RH,即 10V 代表 100%RH,则可写出方程组 10=1*K+B,100=10*K+B;解方程组得 K=10,B=0;当变送器传感器出 现误差时也可以用此方法,采样两个对应点的数据,利用两点校准法计算 K、B 值,写入仪 器即完成对传感器的校准。

◆ 上一页、下一页:通过点击界面下侧的这两个功能按键,切换8组通道的设置界面;以
 当前8通道显示为例,按此功能键可显示上一组8通道或者下一组8通道的设置界面;

4.5 设置文件界面

在主界面轻触屏幕上的【设置文件】按键,直接进入设置文件界面 (如下图 4.5.1 所示); 该界面可读取、保存,已设置好的通道设置以及系统设置的参数方案,最多可保存 10 组数 据方案;

く 设置プ	て件 >)	4		8 CH
「序号	设置参数存储文件名	选中	修改时间	·
00	默认设置		2022/05/31 10:44:04	曲线图
01	ESHI2	\checkmark	2022/06/14 09:34:17	
02	3		2022/06/14 09:34:28	柱状图
03				
04				通道设置
05				
06				设置文件
07				
08				系统设置
09				
U盘已接入	× •			

图 4.5.1 设置文件界面示意图

在此界面轻触对应序号的文件名处,弹出对话框(图 4.5.2 所示),输入文件名,点击保存键可将当前设置方案保存;点击读取键,读取对应设置方案;

く 设置プ	2件 >)	8 CH
序号	设置参数存储文件名 选中 修改时间	- <u>-</u>
00	默认设置 2022/05/31 10:44:04	曲线图
01	ESHI 4 09:34:17	
02	3 4 09:34:28	柱状图
03	DOUTO	
04	ESHIZ	通道设置
05		
06	保存 读取 取消	设置文件
07		
08		系统设置
09		
14:44:59		

图 4.5.2 文件读取、保存界面示意图

4.6 系统设置界面

在主界面轻触屏幕上的【系统设置】按键,直接进入系统设置界面(如下图 4.6.1 所示); 该界面可设置各项系统参数;

图 4.6.1 系统设置界面示意图

参数说明:

- ◆ 报警声:轻触此按键,选择打开或者关闭报警声;
- ◆ 采样率:轻触此按键,选择采样时间: 1s、0.5s、10s、1m、10m;
- ◆ 波特率:轻触此按键,选择波特率: 9600、38400、115200; 默认为 115200;
- ◆ 语言: 轻触此按键,选择显示语言: 中文、English;
- ◆ 日期、时间:轻触此选项,可修改当前的日期和时间;
- ◆ 存储路径:轻触此按键,选择数据文件的存储路径:U盘、TF-card;当面板上未插存储 U盘或 TF 卡时,默认数据不保存;只插U盘时,默认数据保存在U盘;只插 TF 卡时, 默认数据保存在 TF 卡;当同时插上U盘和 TF 卡时,以此选项的设置为准;
- ◆ 存储间隔:轻触此按键,选择数据文件的存储间隔时间:默认、2k、10k、20k;默认选项表示每5万次采样,保存一次数据;2k表示每2千次采样,保存一次数据;10k表示每1万次采样,保存一次数据;20k表示每2万次采样,保存一次数据;
- ◆ **文件名**:轻触此选项,弹出键盘,输入文件名,此文件名为 U 盘、TF 卡所保存的文件

第 19 页

名;

 ◆ 出厂设置:轻触此选项,弹出对话框(图 4.6.2 所示),点击确定恢复出厂设置,点击 取消退出该选项;

出厂	设置
是否确认恢复	夏出厂设置?

图 4.6.2 恢复出厂设置对话框示意图

- ◆ 系统信息:轻触此选项,弹出对话框,显示本仪器的型号、规格、软件版本以及生产厂家;
- ◆ **工程模式**:此选项为厂家调试数据专用,请不要操作该选项。

4.7 上位机软件

配件 U 盘内,有上位机软件和软件驱动,需客户手动安装至电脑内。安装完成后双击 图标,打开上位机,显示主界面。

4.7.1 软件安装

驱动安装:

点击图标"_____",打开驱动安装软件,弹出图 4.7.1,点击**安装**键,开始自动安装,安装完成后显示图 4.7.2,按确定键完成安装并退出。

巡初女装 们 却载	
选择INF文件:	CH341SER.INF ~
安装	WCH.CN
卸载	L11/04/2011, 3.3.2011.11
帮助	

图 4.7.1 驱动安装步骤 1

驱动	安装1印载	戊					
选择	INF文件	: CH341 DriverSetu	SFR.INF	×	1		~
	安装				340		
	卸载		驱动安装成功!		3.20	11.11	
	帮助		港中				

图 4.7.2 驱动安装步骤 2

4.7.2 上位机主界面

打开测试仪器,后盖 USB 接到上位机电脑,驱动安装完成后,就可以打开上位机软件 了。上位机软件的主界面以及各个功能区域如下图所示。

图 4.7.2 上位机界面简介

↔ 设置区域:

在此区域可进行**通讯设置、曲线设置、数据文件、测量显示**的各项设置,点击不同的 设置要求,切换不同的设置界面;


```
图 4.7.2.1 通讯设置示意图
```

打开软件后,按刷新键,串口号会自动连接默认值,也可以手动点击下拉菜单进行设置; 波特率点击下拉菜单进行选择设置,需与仪器所设置的波特率保持一致。

♦ 曲线设置如下图(图 4.7.2.2)所示:
2C tek 中策仪器 ◆ 通讯设置 ▲ 曲线设置 ▲ 数据文件 ビ 测量显示
曲线类型 曲线 ∨ 曲线宽度 像素2 ∨ 时间轴 分 ∨ Y轴下限 100 ∨ Y轴上限 -30 ∨ (M 平滑移动) / 整屏追踪
图 4.7.2.2 曲线设置示意图
曲线类型: 折线、曲线可选;
曲线宽度:选择曲线粗细;
时间轴: X 轴显示单位,分、时、天可选;
Y 轴下限: Y 轴显示下限选择;
Y 轴上限: Y 轴显示上限选择;
平滑移动: 显示比例不变,多余数据会平移出界面;
整屏追踪:显示比例随数据增多,会越来越小,所有数据都现在在屏幕内;

◆ 数据文件如下图(涂 4.7.2.3)所示:

Ctek 中策仪器	☞ 通讯设置	🖿 曲线设置	▶ 数据文件	₩ 测量显示		
D:\		世 选择	前缀 zc30	00 + 后缀(日期)	● 查看	

图 4.7.2.3 数据文件示意图

选择:选择保存数据文件的路径;

前缀,后缀:保存数据文件的前缀名,可自行修改设置,后缀为保存的实时日期和时间;

查看: 点击查看,可导入已保存的数据,进行查看;

图 4.7.2.4 测量显示示意图

间隔:可设置采样间隔时间;

开始:所有设置完成后,点击蓝色开始按键,启动仪器进行测试;左侧显示开始运行的时间, 以及运行的时长;

结束: 点击结束建, 可停止全部测试;

✤ 背景色设置区域

点击主界面左上角,主题选项的下拉菜单,出现下图(图 4.7.2.5)所示选项,点击不同的颜色,个更改整个上位机软件的背景色。

图 4.7.2.5 背景色更改示意图

✤ 曲线显示区域:

图 4.7.2.6 曲线显示区域示意图

在此区域显示实时测试曲线,左上角有开始、暂停、全屏快捷键;在曲线显示区域,点 击鼠标左键可拖拽查看曲线,点击鼠标右键可放大缩小查看曲线。

✤ 通道设置区域

通道设置区域详情如下图(图 4.7.2.7)所示;

图 4.7.2.7 通道设置区域示意图

- (1) 通道标号:与曲线图颜色对应,双击编号数字,可更改对应通道的曲线颜色;
- (2) 通道全选: 勾选后, 该通道 8 路全选;
- (3) 单通道选择区域:可勾选或关闭对应通道;
- (4) 型号设置区域:双击对应通道,弹出对话框,勾选对应的测试型号; V系列的测试选

项为 TC-K, TC-J, TC-T, TC-E, TC-S, TC-N, TC-R, TC-B, TP, CU, mV, V, mA;

- (5) 实时数据显示:对应通道的实测数据;
- (6) 滑块:拖动滑块,查看其他测试通道;

✤ 列表数据区域

105	2023	10.00	1.03	0.10	0.01	10.26	1.02	0.10	0.01	3.22	0.31	0.03	0.00	3.39	0.33	0.03	0.00
104	2023	10.02	1.03	0.10	0.01	10.27	1.02	0.10	0.01	3.21	0.32	0.03	0.00	3.39	0.33	0.03	0.00
103	2023	10.01	1.03	0.10	0.01	10.27	1.02	0.10	0.01	3.21	0.32	0.03	0.00	3.42	0.33	0.03	0.00
102	2023	10.00	1.03	0.10	0.01	10.27	1.02	0.10	0.01	3.21	0.32	0.03	0.00	3.41	0.33	0.03	0.00
101	2023	10.01	1.03	0.10	0.01	10.26	1.02	0.10	0.01	3.20	0.32	0.03	0.00	3.39	0.33	0.03	0.00
100	2023	10.02	1.03	0.10	0.01	10.24	1.02	0.10	0.01	3.19	0.32	0.03	0.00	3.39	0.33	0.03	0.00
99	2023	10.02	1.03	0.10	0.01	10.24	1.02	0.10	0.01	3.20	0.31	0.03	0.00	3.38	0.33	0.03	0.00
80	2023-	10.03	1.03	0.10	0.01	10.25	1.02	0.10	0.01	3 20	0.31	0.03	0.00	3.40	0.33	0.03	0.00

图 4.7.2.8 列表数据区域示意图

实时显示各通道采样数据,可拖动右侧滑块,进行查看。

✤ 联机状态显示区域

4.7.3 简易操作示例

(1) 仪器通电开机,若有已保存测试方案,可在仪器的设置文件内调取;

(2) 后盖 USB 与电脑连接,打开电脑上位机软件;

(3) 上位机软件主界面显示联机成功;

(4) 若有参数修改,可在通道设置区域设置修改; (上位机内修改的设置,关机后不保存, 需在下位机内手动保存方案)

(5)可在数据文件页面,设置好数据保存路径;

(6)所有参数设置完成后,下位机端口插上测试线,在测量显示界面,点击蓝色开始键, 开始测试;

测试过程中,若要修改设置,需先停止测试,修改完成后,重新开始测试。

第五章 命令参考

5.1 简介

本节将对所有的V系列后盖USB 命令进行详细介绍。这些命令均符合SCPI 标准命令集。 每个命令的介绍将包含如下内容:

- 命令名称: SCPI 命令的名称。
- 命令语法: 命令的格式包括所有必需的和可选的参数。
- 查询语法: 查询的格式包括所有必须的和可选的参数。
- 查询返回: 仪器的返回数据格式。

5.2 符号约定和定义

本章USB 命令的描述采用如下的符号约定和定义。

- <> 尖括号中的内容用于表示命令的参数。
- [] 方括号中的内容是可选的,可以省略。
- {} 通常花括号中包含几个可选参数,只能选择其中的一个参数。

在命令中将会用到的下列符号定义:

<NL> 换行符(十进制10)。

空格 ASCII 字符(十进制32)。

5.3 命令结构

V系列 命令分为两种类型:公用命令和SCPI 命令。公用命令由IEEE 标准定义适用于所 有的仪器设备。 SCPI 命令采用树状结构,最高层称为子系统命令。只有选择了子系统命令 后,该子系统命令的下层命令才有效。冒号(:)用于分隔高层命令和低层命令。 树状命令基本规则如下:

● 忽略大小写。

例如,

LIMIT:STANDARD = limit:standard = LiMiT:Standard

● 空格(┘ 表示一个空格) 不能位于冒号的前后。

例如,

- 错误: LIMIT^{_}:^{_}STANDARD
- 正确: LIMIT:STANDARD
- 命令后面加一个问号(?)构成该命令的查询命令。
 例如,

LIMIT:STANDARD ?

5.4 命令缩写规则

每个命令和特性参数至少拥有两种拼写形式,缩写形式和全拼形式。有些时候两种拼写 方式完全相同。遵守以下规则进行缩写。

● 如果单词的长度为四个字母或少于四个字母,则缩写形式和全拼形式相同。

如果单词的长度大于四个字母,
 如果第四个字母是个元音字母,那么缩写形式为该单词的前三个字母。
 如果第四个字母是个辅音字母,那么缩写形式为该单词的前四个字母。
 例如:

LIMIT 可缩写成LIM。

RANGE 可缩写成RANG。

5.5 命令题头和参数

V系列控制命令包含命令题头和相关参数。命令题头可以是全拼或缩写形式。使用全拼 方式便于理解命令的意思,而使用缩写方式可以提高计算机输入效率。参数可以为如下两种 形式之一。用空格来分隔命令和命令的参数。

● 字符数据和字符串数据

字符数据由ASCII 字母构成。缩写规则与命令题头相同。

● 数值数据

整数(NR1),定点数(NR2),或浮点数(NR3)。数值范围为±9.9E37。

NR1 举例如下:

123

+123

-123

NR2 举例如下:

12.3

+1.234

-123.4

NR3 举例如下:

12.3E+5

123.4E-5

5.6 命令参考

5.6.1 IDN 命令

IDN 命令用于查询仪器 ID 号,内容包括生产厂家缩写、仪器型号、采样通道数和软件版本号。

查询语法: *IDN?

查询返回: <CZZC,V 系列,XXCH,Ver:X.XX>

注: XXCH 为采样通道数, Ver:X.XX 为软件版本号。例: ZC,V 系列,64CH,Ver:2.00

5.6.2 FETCH 命令

FETCH 命令用于查询仪器所有通道温度值。

查询语法: FETCH?

查询返回: <25.09>,<25.91>,<25.96>,<25.76>

注: 根据通道数不同返回数据量不同,通道数据之间用逗号","隔开。

5.6.3 MEAS 命令集

MEAS 子系统命令集用于设定仪器测量采样相关参数,包括采样启停、键盘锁、传感器型号、采样速度、上限、下限等设置。

命令树:

MEAS:START 用于控制仪器启动和停止采样。

命令语法:

MEAS:START <ON,OFF>

例如: WrtCmd("MEAS:START ON"); 启动仪器采样。

查询语法: MEAS:START?

查询返回: <ON,OFF>

MEAS:KEYLOCK 用于锁定仪器按键和触摸屏,在用上位机远程控制仪器时,禁止仪器面板同时操作。

命令语法:

MEAS:KEYLOCK <ON,OFF>

例如: WrtCmd("MEAS:KEYLOCK ON"); 打开仪器键盘锁,用户无法利用仪器面板按键操作。

```
查询语法: MEAS:KEYLOCK?
```

查询返回: <ON,OFF>

MEAS:RATE 用于设定仪器采样速度。

命令语法:

MEAS:RATE <SLOW, MED, FAST>

这里: SLOW: 慢速

MED : 中速

FAST : 快速

例如: WrtCmd("MEAS:RATE SLOW"); 设定仪器采样速度为慢速。

查询语法: MEAS:RATE?

查询返回: <SLOW,MED,FAST>

MEAS:MODEL:CH 用于设定仪器各通道的传感器类型,其中"CH"为通道号,当"CH"为"1-64"时,设置单个通道为此类型,当"CH"为"ALL"时,统一设置所有通道为此类型。

命令语法:

单通道设置 MEAS:MODEL:1 <TC_K,TC_J,TC_T,TC_N,TC_E,TC_S,TC_R,TC_B>

这里: TC K:K 型热电偶

第 30 页

TC_J: J 型热电偶

TC_T: T 型热电偶

TC_N: N 型热电偶

TC E: E 型热电偶

TC_S: S 型热电偶

TC_R: R 型热电偶

TC_B: B 型热电偶

TP100: TP100 热电阻

CU50: CU50 热电阻

mV: 直流电压

V: 直流电压

mA: 直流电流

所有通道设置 MEAS:MODEL:ALL

<TC_K,TC_J,TC_T,TC_N,TC_E,TC_S,TC_R,TC_B,TP100,CU50,mV,V,mA>

例如: 单通道设置 WrtCmd("MEAS:MODEL:1 TC_K"); 设定仪器通道 CH1 为 K 型热电偶。

例如:所有通道设置 WrtCmd("MEAS:MODEL:ALL TC_K");设定仪器所有通道为 K型热电偶。

单通道查询语法: MEAS:MODEL:1?

单通道查询返回: <TC_K,TC_J,TC_T,TC_N,TC_E,TC_S,TC_R,TC_B>

所有通道查询语法: MEAS:MODEL:ALL?

所有通道查询返回:

<TC_K,TC_J,TC_T,TC_N,TC_E,TC_S,TC_R,TC_B>,<TC_K,TC_J,TC_T,TC_N,TC_E,TC_S,TC_R,TC_B>, ••

注:多通道返回值根据通道数不同返回数据量不同,通道数据之间用逗号","隔开。

MEAS:LOW:CH 用于设定仪器各通道的报警下限值,其中"CH"为通道号,当"CH"为"1-64"时,设置单个通道为此类型,当"CH"为"ALL"时,统一设置所有通道为此类型。命令语法:

单通道设置 MEAS:LOW:1 <value>

所有通道设置 MEAS:LOW:ALL <value>

例如: 单通道设置 WrtCmd("MEAS:LOW:1-200"); 设定仪器通道 CH1 报警下限值为-200。

第 31 页

例如:所有通道设置 WrtCmd("MEAS:LOW:ALL -200");设定仪器所有通道报警下限值为-200。

单通道查询语法: MEAS:LOW:1?

单通道查询返回: <value>

所有通道查询语法: MEAS:LOW:ALL?

所有通道查询返回: <value>,<value>,•••

注:多通道返回值根据通道数不同返回数据量不同,通道数据之间用逗号","隔开。

MEAS:HIGH:CH 用于设定仪器各通道的报警上限值,其中 "CH"为通道号,当 "CH"为 "1-64"时,设置单个通道为此类型,当 "CH"为 "ALL"时,统一设置所有通道为此类型。 命令语法:

单通道设置 MEAS:HIGH:1 <value>

所有通道设置 MEAS:HIGH:ALL <value>

例如:单通道设置 WrtCmd("MEAS:HIGH:11800");设定仪器通道 CH1 报警上限值为 1800。 例如:所有通道设置 WrtCmd("MEAS:HIGH:ALL 1800");设定仪器所有通道报警上限值为 1800。

单通道查询语法: MEAS:HIGH:1?

单通道查询返回: <value>

所有通道查询语法: MEAS:HIGH:ALL?

所有通道查询返回: <value>,<value>,•••

注:多通道返回值根据通道数不同返回数据量不同,通道数据之间用逗号","隔开。

5.6.4 SYST 命令集

SYST 子系统命令集用于设定仪器的系统功能,包括温度单位和报警提示音等设置。 命令树:

SYST:UNIT 用于设定温度单位显示方式,字符?可以查询当前的温度单位显示方式。 命令语法:

SYST:UNIT <CEL,KEL,FAH>

这里: CEL: 摄氏度

KEL: 开尔文度

FAH : 华氏度

例如: WrtCmd("SYST:UNIT CEL"); 设定仪器温度单位为摄氏度。

第 32 页

查询语法: SYST:UNIT?

查询返回: <CEL,KEL,FAH>

SYST:BEEP 用于设定仪器按键音的开关状态,字符?可以查询当前的触摸音状态。命令语法:

SYST:BEEP <ON,OFF>

例如: WrtCmd("SYST:BEEP ON"); 打开仪器报警提示音。

查询语法: SYST:BEEP?

查询返回: <ON,OFF>

附件:

Ⅴ系列系列多路温度测试仪	1台
使用说明书	1本
测试报告	1张
K型热电偶测试线	1套
U 盘	1个
USB 数据线	1根
电源线	1根